
Young Won Lim
10/16/19

Monad P1 : Several Monad Types (4A)

Young Won Lim
10/16/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Monad Types (6A) 3 Young Won Lim
10/16/19

Based on

What is a monad
https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 4 Young Won Lim
10/16/19

Pure functional programs

Why do you need a monad?

Pure functional languages are different from

imperative languages like C, or Java in that,

● a pure functional program is not necessarily

executed in a specific order, one step at a time.

● A Haskell program is more akin to a mathematical function,

in which you may solve the "equation"

in any number of potential orders.

● it eliminates the possibility of certain kinds of bugs

(data dependency, and those related to things like state)

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 5 Young Won Lim
10/16/19

Execution orders

However, certain problems like

console programming, and file i/o,

need things to happen in a particular order, or

need to maintain state.

One way to deal with this problem is to create

● a kind of object that represents

the state of a computation, and

● a set of functions

that take a state object as input,

and return a new modified state object.

https://stackoverflow.com/questions/44965/what-is-a-monad

put nsget return y

State
(x , s) s

state object

a set of functions

Monad Types (6A) 6 Young Won Lim
10/16/19

A hypothetical state value

a hypothetical state value can

represent the state of a console screen.

● exact value is not important,

● an array of byte length ascii characters

that represents what is currently visible on the screen

● an array that represents

the last line of input entered by the user, in pseudocode.

● create some functions that take console state,

modify it, and return a new console state.

https://stackoverflow.com/questions/44965/what-is-a-monad

World (a, World)

s (a, s)

Monad Types (6A) 7 Young Won Lim
10/16/19

Nesting style for a particular execution order

consolestate MyConsole = new consolestate;

for a pure functional manner, a possible choice is to nest a lot of function calls inside each other.

consolestate FinalConsole =

print(input(print(myconsole, "Hello, what's your name?")),"hello, %inputbuffer%!");

● this programming keeps the pure functional style

● while forcing changes to the console to happen in a particular order.

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 8 Young Won Lim
10/16/19

No-nesting style

● more than just a few operations at a time

● more than nesting functions

● a more convenient way to write it

consolestate FinalConsole = myconsole :

 print("Hello, what's your name?") :

 input() :

 print("hello, %inputbuffer%!");

https://stackoverflow.com/questions/44965/what-is-a-monad

: (cons operator)

● more than sequencing
● flexible function combining

Monad Types (6A) 9 Young Won Lim
10/16/19

Monad, bind and lift operators

If you have a type (such as consolestate)

that you want to define along with a few functions

that are designed to operate on that type,

you can pack the type and related function definitions

into a monad by defining an operator like :

(bind operator) automatically feeds return values on its left,

into function parameters on its right,

(lift operator) turns normal functions, into functions

that work with that specific kind of bind operator.

https://stackoverflow.com/questions/44965/what-is-a-monad

 (>>=) :: m a -> (a -> m b) -> m b

liftM :: a -> b -> m a -> m b
 f :: a -> b
liftM f :: m a -> m b

Monad Types (6A) 10 Young Won Lim
10/16/19

Bind operator >>=

putStrLn "What is your name?"

>>= (_ -> getLine)

>>= (\name -> putStrLn ("Welcome, " ++ name ++ "!"))

The >>= operator takes a value (on the left side)

and combines it with a function (on the right side),

to produce a new value.

This new value is then taken by the next >>= operator

and again combined with a function to produce a new value.

>>= can be viewed as a mini-evaluator.

https://stackoverflow.com/questions/44965/what-is-a-monad

putStrLn :: String -> IO ()

getLine :: IO String

PutStrLn "…" >>= (_ -> getLine) >>= (\name -> putStrLn ("..."))

() String

Monad Types (6A) 11 Young Won Lim
10/16/19

Monadic operation

a monad

● is a parameterized type

● is an instance of the Monad type class

● defines >>= along with a few other operators.

● just a type for which the >>= operation is defined.

In itself >>= is just a cumbersome way of chaining functions,

but with the presence of the do-notation

which hides the "plumbing",

the monadic operations turns out to be a very nice

and useful abstraction, useful many places in the language,

and useful for creating your own mini-languages in the language.

https://stackoverflow.com/questions/44965/what-is-a-monad

tick :: State Int Int
tick = do n <- get
 put (n+1)
 return n

test = do tick
 tick

test = tick >> tick

Monad Types (6A) 12 Young Won Lim
10/16/19

>>= : an overloaded operator

Note that >>= is overloaded for different types,

so every monad has its own implementation of >>=.

(All the operations in the chain have to be of the type

of the same monad though, otherwise the >>= operator won't work.)

The simplest possible implementation of >>= just takes the value

on the left and applies it to the function on the right and

returns the result, but as said before,

what makes the whole pattern useful is

when there is something extra going on

in the monad's implementation of >>=.

https://stackoverflow.com/questions/44965/what-is-a-monad

every monad must
implement >>=

only the same monad
can be used in a chain

M :: m a
F :: a -> m b
G :: b -> m c
H :: c -> m d

M >>= F >>= G >>= H

 (>>=) :: m a -> (a -> m b) -> m b

Monad Types (6A) 13 Young Won Lim
10/16/19

Combining functions

in a do-block, every operation (basically every line) is

wrapped in a separate anonymous function.

these functions are then combined using the bind operator

the bind operation combines functions,

it can execute them as it sees fit:

● sequentially,

● multiple times,

● in reverse,

● discard some,

● execute some on a separate thread and so on.

https://stackoverflow.com/questions/44965/what-is-a-monad

M = do
imperative
codes …

F = do
imperative
codes …

G = do
imperative
codes …

M >>= F >>= G

m a >>= a -> m b >>= b -> m c

Monad Types (6A) 14 Young Won Lim
10/16/19

Various Monad applications (1)

1) The Failure Monad:

If each step returns a success/failure indicator,

bind can execute the next step only if the previous one succeeded.

a failing step can abort the whole sequence "automatically",

without any conditional testing from you.

2) The Error Monad or Exception Monad:

Extending the Failure Monad, you can implement exceptions

By your own definition (not being a language feature),

you can customize how they work.

(e.g., can ignore the first two exceptions and

abort when a third exception is thrown.)

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 15 Young Won Lim
10/16/19

Various Monad applications (2)

3) The List Monad:

each step returns multiple results, and the bind function iterates over

them, feeding each one into the next step

No need to write loops all over the place

when dealing with multiple results.

4) The Reader Monad

As well as passing a result to the next step,

the bind function pass extra data around as well

This extra data now doesn't appear in your source code,

but it can be still accessed from anywhere,

without a manual passing

https://stackoverflow.com/questions/44965/what-is-a-monad

environment

Monad Types (6A) 16 Young Won Lim
10/16/19

Various Monad applications (3)

5) The State Monad and the Writer Monad

the extra data can be replaced.

this allows you to simulate destructive updates

without actually doing destructive updates

you can trivially do things that would be impossible

with real destructive updates.

● undo

● revert

● pause

● resume

https://stackoverflow.com/questions/44965/what-is-a-monad

World (a, World)

w0 (x1, w1)
w1 (x2, w2)
w2 (x3, w3)

Monad Types (6A) 17 Young Won Lim
10/16/19

Various Monad applications (4)

for example, you can undo the last update,

or revert to an older version.

You can make a monad where calculations can be paused,

so you can pause your program,

go in and tinker with internal state data,

and then resume it.

You can implement continuations as a monad.

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 18 Young Won Lim
10/16/19

Various Monad applications (5)

6) The Writer Monad

computations produce a stream of data log

in addition to the computed values. value

It is often desirable for a computation

to generate output on the side.

Logging and tracing are the most common examples

data is generated during a computation

that we want to retain

but is not the primary result of the computation.

 https://wiki.haskell.org/All_About_Monads#The_Writer_monad

A Writer monad value is a
(computation value, log value) pair.

 (value, log)

Monad Types (6A) 19 Young Won Lim
10/16/19

List Monad Examples

[x*2 | x<-[1..4], odd x]

t = do x <- [1..4]

 if odd x then [x*2] else []

[1..4] >>= (\x -> if odd x then [x*2] else [])

1 [2]

2 []

3 [6]

4 []

https://stackoverflow.com/questions/44965/what-is-a-monad

Monads as computation builders

the monad chains operations

in some specific, useful way.

in the list comprehension example:

if an operation returns a list,

then the following operations are

performed on every item in the list.

Monad Types (6A) 20 Young Won Lim
10/16/19

IO Monad Examples

do

 putStrLn "What is your name?"

 name <- getLine

 putStrLn ("Welcome, " ++ name ++ "!")

name :: String

getLine :: IO String

Read a line from the standard input device

getChar :: IO Char

Read a character from the standard input device

https://stackoverflow.com/questions/44965/what-is-a-monad

Monads as computation builders

the monad chains operations

in some specific, useful way.

in the IO monad example

the operations are performed sequentially,

but a hidden variable is passed along,

which represents the state of the world,

allows us to write I/O code in a pure

functional manner.

World (a, World)

w0 (x1, w1)
w1 (x2, w2)
w2 (x3, w3)

Monad Types (6A) 21 Young Won Lim
10/16/19

Input functions

getChar :: IO Char Char

getLine :: IO String Line

getContents :: IO String Contents

interact :: (String -> String) -> IO ()

readIO :: Read a => String -> IO a IO

readLn :: Read a => IO a Ln

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Monad Types (6A) 22 Young Won Lim
10/16/19

Input functions – getChar, getLine, getContents

The getChar operation raises an exception on end-of-file;

a predicate isEOFError that identifies

this exception is defined in the IO library.

The getLine operation raises an exception

under the same circumstances as hGetLine,

defined the IO library.

The getContents operation returns

all user input as a single string,

which is read lazily as it is needed.

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

getChar :: IO Char

getLine :: IO String

getContents :: IO String

Monad Types (6A) 23 Young Won Lim
10/16/19

Input functions – interact

The interact function takes a function

of type String->String as its argument.

The entire input from the standard input device

is passed to this function as its argument,

and the resulting string is output on the standard output device.

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

https://wiki.haskell.org/Tutorials/Programming_Haskell/String_IO

interact :: (String -> String) -> IO ()

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Monad Types (6A) 24 Young Won Lim
10/16/19

interact examples

A.hs

 main = interact count -- 24 characters

 count s = show (length s) ++ "\n" -- 33 characters

$ runhaskell A.hs < A.hs

57

The following program simply removes

all non-ASCII characters from its standard input

and echoes the result on its standard output.

(The isAscii function is defined in a library.)

main = interact (filter isAscii)

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Monad Types (6A) 25 Young Won Lim
10/16/19

Input functions – readIO, readLn

Typically, the read operation from class Read

is used to convert the string to a value.

The readIO function is similar to read

except that it signals parse failure

to the IO monad instead of terminating the program.

The readLn function combines getLine and readIO.

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

convert the string to a value

readIO :: Read a => String -> IO a

readLn :: Read a => IO a

Monad Types (6A) 26 Young Won Lim
10/16/19

readIO examples

main = do x <- rList "[1,3,5,7]"
 y <- rInt "5"
 print (map (y*) x)

rList :: String -> IO [Int]
rList = readIO

rInt :: String -> IO Int
rInt = readIO

Output: [5,15,25,35]

rList "[1,3,5,7]" [1,3,5,7] :: [Int]
rInt "5" ”5” :: Int

http://zvon.org/other/haskell/Outputprelude/readIO_f.html

main = do x <- aaa "[1,3,5,7]"
 print x

aaa :: String -> IO (Int,Int,[Int])
aaa str = do x <- readIO str

 return (sum x, product x, x)

Output: (16,105,[1,3,5,7])

aaa "[1,3,5,7]" [16, 105, [1,3,5,7]]
[1,3,5,7]
sum [1,3,5,7] 16
product [1,3,5,7] 105

Monad Types (6A) 27 Young Won Lim
10/16/19

readLn Examples

main = do x <- getDouble
 y <- getDouble

 print (x+y)

getDouble :: IO Double
getDouble = readLn

Input: 12 (return)
Input: 4.34 (return)
Output: 16.34

http://zvon.org/other/haskell/Outputprelude/readIO_f.html

main = do x <- getList
 print (product x)

getList :: IO [Int]
getList = readLn

Input: [1,2,3,4] (return)
Output: 24

main = do x <- aaa
 print x

aaa :: IO (Int,Int,[Int])
aaa = do x <- readLn

 return (sum x, product x, x)

Input: [1,3,5] (return)
Output: (9,15,[1,3,5])

Monad Types (6A) 28 Young Won Lim
10/16/19

Output functions

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO () -- adds a newline

print :: Show a => a -> IO ()

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Monad Types (6A) 29 Young Won Lim
10/16/19

Output functions – print

the print function outputs a value of any printable type

to the standard output device.

printable types are those that are instances of class Show;

print converts values to strings for output

using the show operation and adds a newline.

For example, a program to print the first 20 integers

and their powers of 2 could be written as:

main = print ([(n, 2^n) | n <- [0..19]])

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

print :: Show a => a -> IO ()

Monad Types (6A) 30 Young Won Lim
10/16/19

Reader Monad Example (1)

Reader r a

where r is some environment and

a is some value you create from that environment

let r1 = return 5 :: Reader String Int

:t r1

r1 :: Reader String Int

a Reader that takes in a String and returns an Int.

The String is the environment of the Reader.

https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html

Monad Types (6A) 31 Young Won Lim
10/16/19

Reader Monad Example (2)

Reader r a

let r1 = return 5 :: Reader String Int

r1 :: Reader String Int

(runReader r1) "this is your environment"

5

runReader :: Reader r a -> r -> a

So runReader takes in a Reader and an environment (r)

and returns a value (a).

https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html

Monad Types (6A) 32 Young Won Lim
10/16/19

Reader Monad Example (3)

import Control.Monad.Reader

tom :: Reader String String

tom = do

 env <- ask

 return (env ++ " This is Tom.")

jerry :: Reader String String

jerry = do

 env <- ask

 return (env ++ " This is Jerry.")

https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html

tomAndJerry :: Reader String String

tomAndJerry = do

 t <- tom

 j <- jerry

 return (t ++ "\n" ++ j)

runJerryRun :: String

runJerryRun = (runReader tomAndJerry) "Who is this?"

Who is this? This is Tom.

Who is this? This is Jerry.

Monad Types (6A) 33 Young Won Lim
10/16/19

Writer Monad Example (1)

import Control.Monad.Writer

logNumber :: Int -> Writer [String] Int

logNumber x = writer (x, ["Got number: " ++ show x]) -- here

-- or can use a do-block to do the same thing,

-- and clearly separate the logging from the value

logNumber2 :: Int -> Writer [String] Int

logNumber2 x = do

 tell ["Got number: " ++ show x]

 return x

https://gist.github.com/davidallsopp/b7ecf8789efa584971c1

Monad Types (6A) 34 Young Won Lim
10/16/19

Writer Monad Example (2)

multWithLog :: Writer [String] Int

multWithLog = do

 a <- logNumber 3

 b <- logNumber 5

 tell ["multiplying " ++ show a ++ " and " ++ show b]

 return (a*b)

main :: IO ()

main = print $ runWriter multWithLog

-- (15,["Got number: 3","Got number: 5","multiplying 3 and 5"])

https://gist.github.com/davidallsopp/b7ecf8789efa584971c1

Monad Types (6A) 35 Young Won Lim
10/16/19

Writer Monad Example (3)

multWithLog :: Writer [String] Int

multWithLog = do

 a <- logNumber 3

 b <- logNumber 5

 tell ["multiplying " ++ show a ++ " and " ++ show b]

 return (a*b)

-- (15, ["Got number: 3", "Got number: 5", "multiplying 3 and 5"])

https://gist.github.com/davidallsopp/b7ecf8789efa584971c1

logNumber :: Int -> Writer [String] Int

logNumber x = do

 tell ["Got number: " ++ show x]

 return x

logNumber :: Int -> Writer [String] Int

logNumber x = do

 tell ["Got number: " ++ show x]

 return x

Monad Types (6A) 36 Young Won Lim
10/16/19

Writer Monad Instance

instance (Monoid w) => Monad (Writer w) where

 return :: a -> Writer w a

 return a = writer (a,mempty)

 (>>=) :: Writer w a -> (a -> Writer w b) -> Writer w b

 (writer (a,w)) >>= f =

 let (a',w') = runWriter $ f a

in writer (a',w `mappend` w')

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

binding replaces the computation value a

with the result a’ of applying the bound

function to the previous value

(a',w') = runWriter $ f a

and appends any log data of application

to the existing log data.

w `mappend` w'

Monad Types (6A) 37 Young Won Lim
10/16/19

A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do

 char '”' -- \”.*\”

 x <- many (noneOf "\"")

 char '"'

 return (StringValue x)

parseNumber = do

 num <- many1 digit

 return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

The operations (char, digit, etc)

either match or not

the monad manages the control flow:

The operations are performed sequentially

until a match fails, in which case the monad

backtracks to the latest <|> and tries the

next option.

Again, a way of chaining operations

with some additional, useful semantics.

Monad Types (6A) 38 Young Won Lim
10/16/19

Parser – char, digit

char :: Stream s m Char => Char -> ParsecT s u m Char

char c parses a single character c.

Returns the parsed character (i.e. c).

semiColon = char ';'

digit :: Stream s m Char => ParsecT s u m Char

Parses a digit.

Returns the parsed character.

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 39 Young Won Lim
10/16/19

Parser – many, many1, noneOf

many :: ReadP a -> ReadP [a] .*

Parses zero or more occurrences of the given parser.

many1 :: ReadP a -> ReadP [a] .+

Parses one or more occurrences of the given parser.

noneOf :: Stream s m Char => [Char] -> ParsecT s u m Char

As the dual of oneOf, noneOf cs succeeds

if the current character not in the supplied list of characters cs.

Returns the parsed character.

consonant = noneOf "aeiou"

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 40 Young Won Lim
10/16/19

Parser – <|> combinator

(<|>) :: (ParsecT s u m a) -> (ParsecT s u m a) -> (ParsecT s u m a)

This combinator implements choice.

The parser p <|> q first applies p.

If it succeeds, the value of p is returned.

If p fails without consuming any input, parser q is tried.

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad Types (6A) 41 Young Won Lim
10/16/19

ReadP

parser generator library:

Text.ParserCombinators.ReadP.

Whenever you need to write your own parser

to consume some kind of data

a library of parser combinators

It parses all alternatives in parallel,

so it never keeps hold of the beginning of the input string,

a common source of space leaks with other parsers

https://two-wrongs.com/parser-combinators-parsing-for-haskell-beginners.html#readp

Monad Types (6A) 42 Young Won Lim
10/16/19

ReadP

import Text.ParserCombinators.ReadP

isVowel :: Char -> Bool

isVowel char =

 any (char ==) "aouei"

vowel :: ReadP Char

vowel =

 satisfy isVowel

satisfy :: (Char -> Bool) -> ReadP Char

satisfy :: Stream s m Char => (Char -> Bool) -> ParsecT s u m Char

https://two-wrongs.com/parser-combinators-parsing-for-haskell-beginners.html#readp

the helper function isVowel which simply

returns True for any character that is a vowel.

checking if the argument character

is equal to any character in "aouei".

isVowel is then used in the parser vowel,

through the satisfy function from the ReadP

library

Monad Types (6A) 43 Young Won Lim
10/16/19

Combinator (1)

A function or definition with no free variables.

a pure lambda-expression that refers only to its arguments, like

 \a -> a id

 \a -> \b -> a const

 \f -> \a -> \b -> f b a flip

https://wiki.haskell.org/Combinator

Monad Types (6A) 44 Young Won Lim
10/16/19

Combinator (2)

The second meaning of "combinator" is

a more informal sense

referring to the combinator pattern,

a style of organizing libraries centered

around the idea of combining things.

Usually there is some type T,

some functions for constructing "primitive" values of type T,

and some "combinators" which can combine values of type T

in various ways to build up more complex values of type T.

https://wiki.haskell.org/Combinator

Monad Types (6A) 45 Young Won Lim
10/16/19

Parse Combinator

ParsecT s u m a

a parser (a monad transformer)

stream type s,

user state type u,

underlying monad m,

return type a.

type Parsec s u = ParsecT s u Identity

type Parser = Parsec String ()

This means that a function returning Parser a

parses from a String with () as the initial state.

https://wiki.haskell.org/Combinator

Monad Types (6A) 46 Young Won Lim
10/16/19

Async Monad

to run IO operations asynchronously and wait for their results.

wait for the return value of a thread

The basic type is Async a

represents an asynchronous IO action

that will return a value of type a,

or die with an exception.

An Async corresponds to a thread,

and its ThreadId can be obtained with asyncThreadId

http://hackage.haskell.org/package/async-2.2.1/docs/Control-Concurrent-Async.html#v:async

Monad Types (6A) 47 Young Won Lim
10/16/19

Async Monad Example

to fetch two web pages at the same time,

we could do this (assuming a suitable getURL function):

 do a1 <- async (getURL url1)

 a2 <- async (getURL url2)

 page1 <- wait a1

 page2 <- wait a2

 ...

async starts the operation in a separate thread,

and wait waits for and returns the result.

If the operation throws an exception,

then that exception is re-thrown by wait.

safety: it is harder to accidentally forget about

exceptions thrown in child threads.

http://hackage.haskell.org/package/async-2.2.1/docs/Control-Concurrent-Async.html#v:async

Monad Types (6A) 48 Young Won Lim
10/16/19

Async Monad – async and wait method

async :: IO a -> IO (Async a)

Spawn an asynchronous action in a separate thread.

wait :: Async a -> IO a

Wait for an asynchronous action to complete, and return its value.

If the asynchronous action threw an exception,

then the exception is re-thrown by wait.

http://hackage.haskell.org/package/async-2.2.1/docs/Control-Concurrent-Async.html#v:async

Monad Types (6A) 49 Young Won Lim
10/16/19

Async Monad F# Examples

let AsyncHttp(url:string) =

 async { let req = WebRequest.Create(url)

 let! rsp = req.GetResponseAsync()

 use stream = rsp.GetResponseStream()

 use reader = new System.IO.StreamReader(stream)

 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

GetResponseAsync actually waits for the

response on a separate thread, while the

main thread returns from the function.

The last three lines are executed on the

spawned thread when the response have

been received.

F# code (not Haskell)

Monad Types (6A) 50 Young Won Lim
10/16/19

Async Monad F# Exampes

let AsyncHttp(url:string) =

 async { let req = WebRequest.Create(url)

 let! rsp = req.GetResponseAsync()

 use stream = rsp.GetResponseStream()

 use reader = new System.IO.StreamReader(stream)

 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

In most other languages you would have to

explicitly create a separate function for the

lines that handle the response.

The async monad is able to "split" the

block on its own and postpone the

execution of the latter half.

F# code (not Haskell)

Monad Types (6A) 51 Young Won Lim
10/16/19

References

[1] https://stackoverflow.com/questions/44965/what-is-a-monad

[2] https://wiki.haskell.org/All_About_Monads#The_Writer_monad

[3] https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

[4] https://wiki.haskell.org/Tutorials/Programming_Haskell/String_IO

[5] https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html

[6] https://gist.github.com/davidallsopp/b7ecf8789efa584971c1

[7] https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

[8] https://two-wrongs.com/parser-combinators-parsing-for-haskell-beginners.html#readp

[9] https://wiki.haskell.org/Combinator

[10] http://hackage.haskell.org/package/async-2.2.1/docs/Control-Concurrent-
Async.html#v:async

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

