Monad P3 : Types (1A)

Copyright (c) 2016-2020 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

data, newtype, type

- data is for making new, complicated types, data Person = Bob \mid Cindy \mid Sue
- newtype is for "decorating" or making a copy of an existing type, newtype Dollar = Dollar Double
- type is for renaming a type, type Polygon = [Point]
just makes Dollar be equivalent to Double and
is mostly only used for making certain code easier to read.
https://webcache.googleusercontent.com/search?q=cache:_5DI-cKznPcJ:https://andre.tips/wmh/newtype/
$+\& c d=12 \& h l=e n \& c t=c|n k \& g|=u s$

data, newtype, type

data: zero or more constructors,
each can contain zero or more values.
newtype: similar to above
but exactly one constructor
and only one value in that constructor, and has the exact same runtime representation as the value that it stores.
type: type synonym, compiler more or less forgets about it once it is expanded.

data

data - creates new algebraic type with value constructors

- Can have several value constructors
- Value constructors are lazy
- Values can have several fields
- Affects both compilation and runtime, have runtime overhead
- Created type is a distinct new type
- Can have its own type class instances
- When pattern matching against value constructors, WILL be evaluated at least to weak head normal form (WHNF) *
- Used to create new data type
(example: Address \{ zip :: String, street :: String \})

newtype

newtype - creates new "decorating" type with value constructor

- Can have only one value constructor
- Value constructor is strict
- Value can have only one field
- Affects only compilation, no runtime overhead
- Created type is a distinct new type
- Can have its own type class instances
- When pattern matching against value constructor, CAN be not evaluated at all *
- Used to create higher level concept based on existing type with distinct set of supported operations or that is not interchangeable with original type (example: Meter, Cm, Feet is Double)

type

type - creates an alternative name (synonym) for a type (typedef in C)

- No value constructors
- No fields
- Affects only compilation, no runtime overhead
- No new type is created (only a new name for existing type)
- Can NOT have its own type class instances
- When pattern matching against data constructor,
behaves the same as original type
- Used to create higher level concept based on existing type
with the same set of supported operations
(example: String is [Char])

Data definition without data constructors (1)

a data definition without data constructors
cannot be instantiated

data B

a new type constructor B,
but no data constructors to produce values of type B

In fact, such a data type is declared in the Haskell base: Void
ghci> import Data.Void
ghci> :i Void
data Void -- Defined in 'Data.Void’

Data definition without data constructors (2)

Being able to have uninhabited types turns out to be useful in some areas
passing an uninhabited type as a type parameter to another type constructor

Data definition with data constructors

data $B=$ String

defines
a type constructor B and a data constructor String,
both taking no arguments.

Note that the String you define is in the value namespace,
so is different from the usual String type constructor.
ghci> data $B=$ String
ghci> $\mathrm{x}=$ String
ghci> :t x
x : : B
https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Newtype

In order to add or subtract two Dollars.
use an instance of the Num typeclass
instance Num Dollar where
(Dollar a) + (Dollar b) = Dollar (a + b)
(Dollar a) - (Dollar b) = Dollar (a-b)
(Dollar a) * (Dollar b) = Dollar (a * b)
negate (Dollar a) = Dollar (-a)
abs (Dollar a) = Dollar (abs a)
instance Num Euro where ...
instance Num Yen where ...
https://webcache.googleusercontent.com/search?q=cache:_5DI-cKznPcJ:https://andre.tips/wmh/newtype/
$+\& c d=12 \& h|=e n \& c t=c| n k \& g \mid=u s$

Newtype

```
Wrapping one type (Double) in another (Dollar)
is needed so frequently, that there is a special syntax for it
newtype.
newtype Dollar = Dollar Double deriving (Read, Show)
newtype Euro = Euro Double deriving (Read, Show)
newtype Yen = Yen Double deriving (Read, Show)
data Dollar = Dollar Double deriving (Read, Show)
data Euro = Euro Double deriving (Read, Show)
data Yen = Yen Double deriving (Read, Show)
```

https://webcache.googleusercontent.com/search?q=cache:_5DI-cKznPcJ:https://andre.tips/wmh/newtype/
$+\& c d=12 \& h l=e n \& c t=c|n k \& g|=u s$

Newtype

The main difference between using newtype and data is that newtype only works with the very simple cases of wrapping one type in one other type.

Still, we cannot sum types or have multiple types wrapped up in one.
a special GHC feature
derives automatically ncessary typeclasses
Enabled by \{-\# LANGUAGE GeneralizedNewtypeDeriving \#-\}
at the top of your code
(a pragma to turn on a language extension)

Newtype

```
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
newtype Dollar = Dollar Double deriving (Read, Show)
newtype Euro = Euro Double deriving (Read, Show)
newtype Yen = Yen Double deriving (Read, Sho
```

the Num type class is derived automatically
(Dollar 3) $+($ Dollar 4)
Dollar 7.0.
https://webcache.googleusercontent.com/search?q=cache:_5DI-cKznPcJ:https://andre.tips/wmh/newtype/
$+\& c d=12 \& \mathrm{hl}=$ en\&ct=clnk\&gl=us

Single constructors of newtype and data

```
Both newtype and the single-constructor data
    introduce a single data constructor,
but the data constructor
    introduced by newtype is strict
and the single data constructor
    introduced by data is lazy.
data D = D Int -- lazy
newtype N = N Int -- strict
```


Undefined and strict evaluation

Haskell tries to only evaluate things
only when they are really necessary,
so if you write 1+2 it won't actually evaluate
that until it needs to. (lazy by default)
a special value named undefined (bottom)
If undefined (bottom) is pass to any function
then your program instantly crash when it is evaluated.

data (lazy), newtype (strict)

Then N undefined is equivalent to undefined and causes an error when evaluated.
undefined is evaluated strictly

But D undefined is not equivalent to undefined, and it can be evaluated as long as you don't try to peek inside.

Algebraic type

This is a type where we specify the shape of each of the elements.

Algebraic refers to the property that an Algebraic Data Type is created by algebraic operations.

The algebra here is sums and products:
sum is alternation ($A \mid B$, meaning A or B but not both)
product is combination (A B, meaning A and B together)
http://wiki.haskell.org/Algebraic_data_type

Algebraic type

data Pair = P Int Double

a pair of numbers, an Int and a Double together.
The tag \mathbf{P} is used (in constructors and pattern matching)
to combine the contained values into a single structure that can be assigned to a variable.
data Pair = I Int | D Double
just one number, either an Int or else a Double.
the tags I and D are used (in constructors and pattern matching)
to distinguish between the two alternatives.
http://wiki.haskell.org/Algebraic_data_type

Algebraic type

Sums and products can be repeatedly combined
into an arbitrarily large structures.

Algebraic Data Type is not to be confused with *Abstract* Data Type, which (ironically) is its opposite, in some sense.

The initialism ADT usually means *Abstract* Data Type, but GADT usually means Generalized Algebraic Data Type.

Newtype

wrap one type in another type and
A new type is almost the same as an original type
represented the same as the original type in memory,
zero runtime penalty for using a newtype
newtype Dollars = Dollars Int
to convert the uninformative type Int
into a more descriptive type, Dollars.
to make a value of Dollars,
Dollars 3
https://webcache.googleusercontent.com/search?q=cache:_5DI-cKznPcJ:https://andre.tips/wmh/newtype/
$+\& c d=12 \& h|=e n \& c t=c| n k \& g \mid=u s$

Newtype

a Dollar type, a Yen type, and a Euro type
all just wrappers around Double
data Dollar = Dollar Double deriving (Read, Show)
data Euro = Euro Double deriving (Read, Show)
data Yen $=$ Yen Double deriving (Read, Show)

Let a Currency typeclass has
a convertToDollars
and convertFromDollars function.

Then, let's add, subtract, and multiply the currency
https://webcache.googleusercontent.com/search?q=cache:_5DI-cKznPcJ:https://andre.tips/wmh/newtype/
$+\& c d=12 \& h l=e n \& c t=c|n k \& g|=u s$

Type class instances

Type classes allow us
to declare which types are instances of which class, and
to provide definitions of the overloaded operations
associated with a class.
https://www.haskell.org/tutorial/classes.html

Type class instances

For example, let's define a type class containing an equality operator:
class Eq a where
(==) :: a -> a -> Bool

Eq is the name of the class being defined,
$==$ is the single operation in the class.
a type \mathbf{a} is an instance of the class Eq
if there is an (overloaded) operation $==$
of the appropriate type, defined on it.
(Note that == is only defined on pairs of objects of the same type.)

Type class instances

Eq a expresses a constraint that
a type a must be an instance of the class Eq

Eq a
is not a type expression
expresses a constraint on a type
called a context
placed at the front of type expressions

Type class instances

For example, the effect of the above class declaration
is to assign the following type to $==$:
(=-) :: (Eq a) => a -> a -> Bool
for every type a that is an instance of the class Eq,
== has type a->a->Bool
elem :: (Eq a) => a -> [a] -> Bool
for every type a that is an instance of the class Eq,
elem has type a->[a]->Bool

Type class instances

An instance declaration specifies
which types are instances of the class Eq, and the actual behavior of $==$ on each of those types
instance Eq Integer where
$x==y \quad=x$ `integerEq` y
the definition of $==$ is called a method.
integerEq happens to be the primitive function
in general, any valid expression for a function definition
type
instance Eq integer

class

class
name instance

Type class instances

instance Eq Integer where
$x==y \quad=x$ `integerEq` y
the type Integer is an instance of the class Eq
the definition of the method $==$
instance Eq Float where
$x==y \quad=x$ ‘floatEq` y
the type Float is an instance of the class Eq
the definition of the method $==$

Type class instances

simply substituting type class for class, and type for object, yields a valid summary of Haskell's type class mechanism:
"Classes capture common sets of operations.

Haskell	OOP
type class	class
type	object

A particular object may be an instance of a class, and will have a method corresponding to each operation.
Classes may be arranged hierarchically,
forming notions of superclasses and sub classes, and permitting inheritance of operations/methods.
A default method may also be associated with an operation."

Type class instances

In contrast to OOP, it should be clear that types are not objects, and in particular there is no notion of an object's or type's internal mutable state.

An advantage over some OOP languages is that methods in Haskell are completely type-safe: any attempt to apply a method to a value whose type is not in the required class will be detected at compile time instead of at runtime.

In other words, methods are not "looked up" at runtime but are simply passed as higher-order functions.

Type class instances

parametric polymorphism is useful in defining families of types
by universally quantifying over all types.

Sometimes, however, it is necessary
to quantify over some smaller set of types,
eg. those types whose elements can be compared for equality.

Type class instances

type classes can be seen as providing a structured way to quantify over a constrained set of types

Indeed, we can think of parametric polymorphism
as a kind of overloading too!
an overloading occurs implicitly over all types
a type class for a constrained set of types
https://www.haskell.org/tutorial/classes.html

Polymorphic Types

types that are universally quantified in some way over all types.
polymorphic type expressions essentially describe families of types.

For example, (forall a) [a] is the family of types
consisting of, for every type a, the type of lists of a.

Lists of integers (e.g. [1,2,3]), lists of characters (['a','b','c']),
even lists of lists of integers, etc., are all members of this family.
(Note, however, that [2, 'b'] is not a valid example,
since there is no single type that contains both 2 and 'b'.)

Polymorphic Types

Identifiers such as a above are called type variables, and are uncapitalized to distinguish them from specific types such as Int.
since Haskell has only universally quantified types,
there is no need to explicitly write out the symbol
for universal quantification,
and thus we simply write [a] in the example above.

In other words, all type variables are implicitly universally quantified

Polymorphic Types

Lists are a commonly used data structure in functional languages, and are a good vehicle for explaining the principles of polymorphism.

The list [1,2,3] in Haskell is actually shorthand for the list 1:(2:(3:[])), where [] is the empty list and : is the infix operator that adds its first argument to the front of its second argument (a list).

Since : is right associative, we can also write this list as 1:2:3:[].

Polymorphic Types

```
length :: [a] -> Integer
length [] = 0
length (x:xs) = 1 + length xs
length [1,2,3] => 3
length ['a','b','c'] => 3
length [[1],[2],[3]] => 3
```

an example of a polymorphic function.
It can be applied to a list containing elements of any type,
for example [Integer], [Char], or [[Integer]].

Polymorphic Types

length	$::[a]->$ Integer
length []	$=0$
length $(x: x s)$	$=1+$ length $x s$

The left-hand sides of the equations contain
patterns such as [] and x :xs.

In a function application these patterns are
matched against actual parameters in a fairly intuitive way

Polymorphic Types

length	$::[a]->$ Integer
length []	$=0$
length $(x: x s)$	$=1+$ length $x s$

[] only matches the empty list,
x :xs will successfully match any list with at least one element, binding x to the first element and $x s$ to the rest of the list

If the match succeeds,
the right-hand side is evaluated
and returned as the result of the application.
If it fails, the next equation is tried,
and if all equations fail, an error results.
https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Function head returns the first element of a list, function tail returns all but the first.

```
head
    :: [a] -> a
head (x:xs)
    = x
tail :: [a] -> [a]
tail (x:xs) = xs
```

Unlike length, these functions are not defined for all possible values of their argument. A runtime error occurs when these functions are applied to an empty list.

Polymorphic Types

With polymorphic types, we find that some types are in a sense strictly more general than others in the sense that the set of values they define is larger.

For example, the type [a] is more general than [Char].
In other words, the latter type can be derived from the former by a suitable substitution for \mathbf{a}.

Polymorphic Types

With regard to this generalization ordering,
Haskell's type system possesses two important properties:

First, every well-typed expression is guaranteed
to have a unique principal type (explained below),
and second, the principal type can be inferred automatically.

In comparison to a monomorphically typed language such as C, the reader will find that polymorphism improves expressiveness, and type inference lessens the burden of types on the programmer.

Polymorphic Types

An expression's or function's principal type is
the least general type that, intuitively,
"contains all instances of the expression".

For example, the principal type of head is [a]->a; [b]->a, a->a, or even a are correct types, but too general, whereas something like [Integer]->Integer is too specific.
The existence of unique principal types is the hallmark feature of the Hindley-Milner type system,
which forms the basis of the type systems of Haskell, ML, Miranda, ("Miranda" is a trademark of Research Software, Ltd.) and several other (mostly functional) languages.

Explicitly Quantifying Type Variables

to explicitly bring fresh type variables into scope.

Example: Explicitly quantifying the type variables
map :: forall a b. (a -> b) -> [a] -> [b]
for any combination of types \mathbf{a} and \mathbf{b}
choose $\mathbf{a}=$ Int and $\mathbf{b}=$ String
then it's valid to say that map has the type
(Int -> String) -> [Int] -> [String]

Here we are instantiating the general type of map to a more specific type.

Implicit forall

any introduction of a lowercase type parameter
implicitly begins with a forall keyword,

Example: Two equivalent type statements
id :: a -> a
id :: forall a.a -> a

We can apply additional constraints
on the quantified type variables

Existential Types

Normally when creating a new type using type, newtype, data, etc., every type variable that appears on the right-hand side must also appear on the left-hand side.
newtype ST s a = ST (State\# s -> (\# State\# s, a \#))

Existential types are a way of escaping

Existential types can be used for several different purposes.
But what they do is to hide a type variable on the right-hand side.

Type Variable Example - (1) error

Normally, any type variable appearing on the right must also appear on the left:
data Worker x y = Worker \{buffer :: b, input :: x, output :: y\}

This is an error, since the type of the buffer isn't specified on the right (it's a type variable rather than a type) but also isn't specified on the left (there's no 'b' in the left part).

In Haskell98, you would have to write
data Worker b x y = Worker \{buffer :: b, input :: x , output :: y\}

Type Variable Example - (2) explicit type signature

However, suppose that a Worker can use any type 'b' so long as it belongs to some particular class.

Then every function that uses a Worker will have a type like
foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)
will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

Type Variable Example - (3) existential type

```
data Worker x y = forall b. Buffer b =>
    Worker {buffer :: b, input :: x, output :: y}
```

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear in the Worker type at all.

Type Variable Example - (4) characteristics

```
data Worker x y = forall b. Buffer b =>
    Worker {buffer :: b, input :: x, output :: y}
foo :: Worker Int Int
```

- it is now impossible for a function to demand a Worker having a specific type of buffer.
- the type of foo can now be derived automatically without needing an explicit type signature.
(No monomorphism restriction.)

Type Variable Example - (4) characteristics

```
data Worker x y = forall b. Buffer b =>
    Worker {buffer :: b, input :: x, output :: y}
foo :: Worker Int Int
```

- since code now has no idea what type the buffer function returns, you are more limited in what you can do to it.

Hiding a type

In general, when you use a 'hidden' type in this way, you will usually want that type to belong to a specific class, or you will want to pass some functions along that can work on that type.

Otherwise you'll have some value belonging to a random unknown type,
and you won't be able to do anything to it!

Conversion to less a specific type

Note: You can use existential types to convert a more specific type into a less specific one.

There is no way to perform the reverse conversion!

A heterogeneous list example

This illustrates creating a heterogeneous list, all of whose members implement "Show", and progressing through that list to show these items:
data Obj = forall a. (Show a) => Obj a
xs :: [Obj]
xs = [Obj 1, Obj "foo", Obj 'c']
doShow :: [Obj] -> String
doShow [] = ""
doShow ((Obj x):xs) = show $\mathrm{x}++$ doShow xs

With output: doShow xs ==> "1|"fool"'c'"
https://wiki.haskell.org/Existential_type

Bottom

Bottom

bottom in Haskell specifically called undefined.
This is only one form of it
though technically bottom is also
a non-terminating computation, such as length [1..]
bottom is used to represent an expression which is

- not computable
- runs forever
- never returns a value
- throws an exception
- etc.

Bottom represents computations

The term bottom refers to
a computation which never completes successfully.
a computation that fails due to some kind of error,
a computation that just goes into an infinite loop
(without returning any data).

The mathematical symbol for bottom is ' \perp '.
In plain ASCII, '_l_'.

Bottom - a member of any type

Bottom is a member of any type, even the trivial type () or the equivalent simple type: data Unary = Unary

Bottom - definitions

Bottom can be expressed in Haskell thus:
bottom = bottom
bottom = error "Non-terminating computation!"

Indeed, the Prelude exports a function
undefined = error "Prelude.undefined"

Other implementations of Haskell, such as Gofer, defined bottom as:
undefined | False = undefined

The type of bottom is arbitrary, and defaults to the most general type:
undefined :: a

Bottom - Usage

As bottom is an inhabitant of every type
bottoms can be used wherever a value of that type would be.
This can be useful in a number of circumstances:
-- For leaving a todo in your program to come back to later:
foo $=$ undefined
-- When dispatching to a type class instance:
print (sizeOf (undefined :: Int))
-- When using laziness:
print (head (1 : undefined))

Bottom Rule

```
if }\mathbf{x}\mathrm{ is computable,
    then strict f}\mathbf{x}\mathrm{ evaluates to f}\mathbf{x}\mathrm{ ,
but if }\mathbf{x}\mathrm{ is not computable, undefined
    then strict f x evaluates to "not computable". undefined
for example, f x = 2* x.
consider f(1 / 0)
can't evaluate it because you can't evaluate (1 / 0)
(1 / 0) not computable
    f (1 / 0) not computable
```


strict f x

Sometimes it is necessary
to control order of evaluation in a lazy functional program.

Use the computable function strict,

```
    strict f x = if x\not= \perp then f x else \perp.
```

Operationally, strict $\mathbf{f x}$ is reduced by
first reducing x to weak head normal form (WHNF) and then reducing the application $\mathbf{f} \mathbf{x}$.

Alternatively, it is safe to reduce \mathbf{x} and $\mathbf{f} \mathbf{x}$ in parallel, but not allow access to the result until \mathbf{x} is in WHNF.

Classifying types - Summary

Boxed	a pointer to a heap object.
Unboxed	no_pointer
Lifted	bottom as an element.
Unlifted	no extra values.
Algebraic	one or more constructors,
Primitive	a built-in type

Lifted
lifted by bottom

Undefined
Infinite loop
Exception

(Un)Lifted and (Un)Boxed types

Boxed type

Unlifted type

Unboxed type

Lifted type \longrightarrow Boxed type kind *

Unboxed type $\quad \begin{gathered}\text { Unlifted type } \\ \text { kind } \#\end{gathered}$

[^0]
Bottom in a programming language

programming language :
bottom refers to a value that is less defined than any other.

It's common to assign the bottom value to every computation that either produces an error or fails to terminate,
because trying to distinguish these conditions
which greatly weakens
the mathematics and
complicates program analysis.

Bottom in an order theory

order theory (particularly lattice theory):
The bottom element of a partially ordered set,
if one exists, is the one that precedes all others.

Bottom in a lattice theory

Lattice theory

the logical false value
is the bottom element of a lattice of truth values,
and true is the top element
classical logic
these are the only two - true and false
but one can also consider logics
with infinitely many truthfulness values,
such as intuitionism and various forms of constructivism.

These take the notions in a rather different direction.

Bottom in a standard Boolean logic

standard Boolean logic

the symbol \perp read falsum or bottom,
is simply a statement which is always false,
the equivalent of the false constant in programming languages.

The form is an inverted (upside-down) version of the symbol T (verum or top), which is the equivalent of true -
and there's mnemonic value in the fact that the symbol looks
like a capital letter T.

Bottom - verum an falsum

The names verum and falsum are Latin for "true" and "false"; the names "top" and "bottom" come from the use of the symbols in the theory of ordered sets, where they were chosen based on the location of the horizontal crossbar

Bottom - computability theory

computability theory, \perp is also
the value of an uncomputable computation, so you can also think of it as the undefined value.

It doesn't matter why the computation is uncomputable whether because it has undefined inputs, or never terminates, or whatever.
it defines strict as a function
that makes any computation (another function) undefined whenever its inputs (arguments) are undefined.

WHNF (Weak Head Normal Form)

Normal Form

An expression in normal form

is fully evaluated,
contains no un-evaluated thunks
no sub-expression could be evaluated any further
https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Normal Form Examples

in normal form:
42
(2, "hello")
lx -> (x+1)

not in normal form:

$1+2 \quad--$ we could evaluate this to 3
(lx -> $x+1$) 2 -- we could apply the function
"he" ++ "llo" -- we could apply the (++)
$(\mathbf{1}+\mathbf{1}, \mathbf{2}+\mathbf{2}) \quad-$ we could evaluate $1+1$ and $2+2$

Head - outermost function application

The head in WHNF (Weak Head Normal Form)
does not refer to the head of a list, but to the outermost function application.

thunks

generally refer to unevaluated expressions

HNF (Head normal form) is irrelevant for Haskell.
It differs from WHNF in that
the bodies of lambda expressions
are also evaluated to some extent.

NF is WHNF

An expression in WHNF (weak head normal form)
has been evaluated to the outermost
data constructor or lambda abstraction (the head).
sub-expressions may or may not have been evaluated.

No unevaluated
subexpressions

No unevaluated
head expression

Weak Head Normal Form Test

To determine whether an expression is in weak head normal form, we only have to look at the outermost part of the expression.

If the outermost part of the expression
is a data constructor or a lambda, then it is in weak head normal form.
is a function application,
then it is not in weak head normal form.

Evaluation Example

outermost application

from left to right;
lazy evaluation.

Example:
take 1 (1:2:3:[]) => \{ apply take \}
1 : take (1-1) (2:3:[]) => \{ apply (-) \}
1 : take 0 (2:3:[]) => \{ apply take \}
1 : []

Reduced Normal Form

evaluation stops when there are
no more function applications left to replace.
the result is in normal form
(or reduced normal form, RNF).
no unevaluated subexpressions

Lazy Evaluation

No matter in which order you evaluate an expression, you will always end up with the same normal form (but only if the evaluation terminates).

There is a slightly different description for lazy evaluation.

Namely, it says that you should evaluate everything
to weak head normal form (WHNF) only.

The head of the expression

There are precisely three cases for an expression to be in WHNF:

A constructor: constructor expression_1 expression_2 ..
A built-in function with too few arguments, like (+) 2 or sqrt
A lambda-expression: \x -> expression

In other words, the head of the expression
(i.e. the outermost function application)
cannot be evaluated any further,
but the function argument may contain
unevaluated expressions.

Weak Head Normal Form Test

in weak head normal form:

($1+1,2+2)$	-- the outermost part is the data constructor (,)
lx -> $2+2$	-- the outermost part is a lambda abstraction
'h' : ("e" ++ "llo")	- the outermost part is the data constructor (:)

As mentioned, all the normal form expressions listed above are also in weak head normal form.
not in weak head normal form:
$1+2$-- the outermost part here is an application of (+)
$(1 x->x+1) 2$-- the outermost part is an application of $(\mid x->x+1)$
"he" ++ "llo" -- the outermost part is an application of (++)
in normal form:
42
(2, "hello")
lx -> (x+1)

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

[^0]: https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

