
Young Won Lim
6/14/17

Monad (1A)

Young Won Lim
6/14/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Monad (1A) 3 Young Won Lim
6/14/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Monad (1A) 4 Young Won Lim
6/14/17

Generator

let removeLower x=[c| c<-x, c `elem` ['A'..'Z']]

a list comprehension

[c | c<-x, c `elem` ['A'..'Z']]

c <- x is a generator
c is a pattern

to be matched from the elements of the list x
 to be successively bound to the elements of the input list x

c `elem` ['A'..'Z']

is a predicate which is applied to each successive binding of c inside the comprehension
an element of the input only appears in the output list if it passes this predicate.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Monad (1A) 5 Young Won Lim
6/14/17

Assignment in Haskell

Assignment in Haskell : declaration with initialization:

 You declare a variable;
 Haskell doesn't allow uninitialized variables,

so an initial value must be supplied in the declaration
 There's no mutation, so the value given in the declaration

will be the only value for that variable throughout its scope.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Monad (1A) 6 Young Won Lim
6/14/17

Assignment in Haskell

filter (`elem` ['A' .. 'Z']) x

[c| c <- x]

do c <- x
 return c

x >>= \c -> return c

x >>= return

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Monad (1A) 7 Young Won Lim
6/14/17

Anonymous Functions

(\x -> x + 1) 4
5 :: Integer

(\x y -> x + y) 3 5
8 :: Integer

inc1 = \x -> x + 1

incListA lst = map inc2 lst
 where inc2 x = x + 1

incListB lst = map (\x -> x + 1) lst

incListC = map (+1)

https://wiki.haskell.org/Anonymous_function

Monad (1A) 8 Young Won Lim
6/14/17

Monad Class Function >>= & >>

both >>= and >> are functions from the Monad class.

Monad Sequencing Operator with value passing
>>= passes the result of the expression on the left
as an argument to the expression on the right,
in a way that respects the context the argument and function use

Monad Sequencing Operator
>> is used to order the evaluation of expressions within some context;
it makes evaluation of the right depend on the evaluation of the left

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

Monad (1A) 9 Young Won Lim
6/14/17

Data Constructor

data Color = Red | Green | Blue

Color is a type
Red is a constructor that contains a value of type Color.
Green is a constructor that contains a value of type Color.
Blue is a constructor that contains a value of type Color.

data Color = RGB Int Int Int

Color is a type
RGB is not a value but a function taking three Ints and returning a value

RGB :: Int -> Int -> Int -> Colour

RGB is a data constructor that is a function
taking three Int values as its arguments,
and then uses them to construct a new value.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad (1A) 10 Young Won Lim
6/14/17

Type Constructor (1)

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

a type
SBTree is a type
Leaf is a data constructor (a function)
Branch is a data constructor (a function)

Leaf :: String -> SBTree
Branch :: String -> SBTree -> SBTree -> SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad (1A) 11 Young Won Lim
6/14/17

Type Constructor (2)

Type constructors

Both SBTree and BBTree are type constructors

data SBTree = Leaf String | Branch String SBTree SBTree
data BBTree = Leaf Bool | Branch Bool BBTree BBTree

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor.

BTree has become a function.
It takes a type as its argument and it returns a new tUype.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad (1A) 12 Young Won Lim
6/14/17

Monad Definition

A monad is defined by

 a type constructor m;
 a function return;
 an operator (>>=) “bind"

The function and operator are methods of the Monad type class and have types

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

and are required to obey three laws

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Monad (1A) 13 Young Won Lim
6/14/17

Maybe Monad

the Maybe monad.

The type constructor is m = Maybe,

 return :: a -> Maybe a

 return x = Just x

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Monad (1A) 14 Young Won Lim
6/14/17

Monad Class Function >>= & >>

Maybe is the monad
return brings a value into it
by wrapping it with Just

(>>=) takes
a value m :: Maybe a
a function g :: a -> Maybe b

if m is Nothing,
there is nothing to do and the result is Nothing.

Otherwise, in the Just x case,
the underlying value x is wrapped in Just
g is applied to x, to give a Maybe b result.

Note that this result may or may not be Nothing,
depending on what g does to x.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

Monad (1A) 15 Young Won Lim
6/14/17

Monad Class Function >>= & >>

if there is an underlying value of type a in m,
we apply g to it, which brings the underlying value back into the Maybe monad.

The key first step to understand how return and (>>=) work is tracking
which values and arguments are monadic and
which ones aren't.

As in so many other cases, type signatures are our guide to the process.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

Monad (1A) 16 Young Won Lim
6/14/17

Maybe Monad Examples

a family database that provides two functions:

 father :: Person -> Maybe Person
 mother :: Person -> Maybe Person

Input the name of someone's father or mother.
If some relevant information is missing in the database
Maybe returns a Nothing value to indicate that the lookup failed,
rather than crashing the program.

functions to query various grandparents.
the following function looks up the maternal grandfather (the father of one's mother):

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
 case mother p of
 Nothing -> Nothing
 Just mom -> father mom

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Monad (1A) 17 Young Won Lim
6/14/17

Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
 x <- [1..10]
 if odd x
 then [x*2]
 else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad (1A) 18 Young Won Lim
6/14/17

Monad – I/O Examples

do
 putStrLn "What is your name?"
 name <- getLine
 putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad (1A) 19 Young Won Lim
6/14/17

Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
 char '"'
 x <- many (noneOf "\"")
 char '"'
 return (StringValue x)

parseNumber = do
 num <- many1 digit
 return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

Monad (1A) 20 Young Won Lim
6/14/17

Monad – Asynchronous Examples

let AsyncHttp(url:string) =
 async { let req = WebRequest.Create(url)
 let! rsp = req.GetResponseAsync()
 use stream = rsp.GetResponseStream()
 use reader = new System.IO.StreamReader(stream)
 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

Young Won Lim
6/14/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

