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Energy and average power in time domain

for continuous time signals

Energy, Average Power — deterministic, time domain

a deterministic signal x(t)

xr(£) = x(t) —-T<t<T
= 0 otherwise

the energy
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Fourier transform

for continuous time signals

Fourier Transform Pair x(7) <= X ()

Fourier transform
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Fourier transform of x7(1)

for continuous time signals

bounded duration, bounded variation

for a finite T, x7(t) is assumed to have bounded variation

+T
/ Ix(£)|dt < oo
T

the Fourier transform of x7(1)

X7 ( ):/JFOOXT(t)e_j tdt

oo

=1 .
:/ x(t)e ™ tdt
-T
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Fourier transforms of x7(t) and X7 (1)

for continuous time signals

deterministic X7 (@) v.s. random X7 ()

a deterministic sample signal x7(t)
x7(t) <= X7(0)

a random process signal X7 (1)

XT(t) < XT( )
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Parseval's theorem (I)

for continuous time signals

for a deterministic x7 (1)

a deterministic sample signal x7(1)

/+wa(r)xfr(r)dr:1 /:wxr( )X2(0)do
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Parseval's theorem (II)

for continuous time signals

for a deterministic x7(%) v.s. a random X (1)

@ a deterministic signal x7 (1) <= X7(®)
oo 1 [+
| rPde= o [ ixr(0)Pdo
@ a random signal X7 (1) <= Xt (®)

/_J:QE [|XT(t)’2} dt = ;t/_:wE “XT( )’2} do
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Energy and average power in frequency domain

for continuous time signals

Energy, Average Power — Parseval’s theorem applied

a deterministic signal x7(t)

x(1t) -T<t<T

i) = { 0 otherwise a(E) =T (@)

the energy by Parseval's theorem

E(T):/fTsz(t)dt L /+°°|XT( )2do

T2 )

the average power by Parseval's theorem

1 t7 1 [+ | Xp ()P
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E(T) and P(T) in frequency domain — deterministic case

for continuous time signals

deterministic x7 (1) <= X7(®)

the energy for the deterministic X7 () in x7(t) <= X71(®)

E(T)=5 [ IXr(0)do

the average power for the deterministic Xt ()

1 [ | Xr(0)P?
P(T):%/_m S do

the power density spectrum for the deterministic X7 ()

()P
T 2T
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E(T) and P(T) in frequency domain — random case

for continuous time signals

random X7 (1) <= X7 (o)

the energy for the random Xt (@) in X7(t) <= Xr(®)

E(T) =5 [ ElXr(0)P]do

—oo

the average power for the random X7 ()

P(T)— 1 /+mEUXT( )‘2]

o). T 99

the power density spectrum for the random X7 ()

e
T —eo 2T
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Average power P(T) — bounded duraton (—T,+T)

for continuous time signals

_
P(T) = 21T/+T 2(1)dt

@ not the average power in a random process
only the power in one sample function
e to obtain the average power over all possible realizations,
replace x(t) by X(t)
take the expected value of x?(1), that is E [X?(t)]
e then, the average power is a random variable
with respect to the random process X(t)

@ not the average power in an entire sample function
e take T — oo to include all power in the ensemble member
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Average power Pxx — unbounded duraton (—oo, +o0)

for continuous time signals

P(T) = 21_,_/+TTx2(t)dt

e replace x(t) by the random variable X(t)
o take the expected value of x?(1), that is £ [X?(t)]

P(T) = 21T/_+TTE X2(1)] dt

@ take T — oo to include all power

: 1 >
Pxx = lim P(T)|= lim o= | E[X?()]dt
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Average power Pxx — time average Ale]

for continuous time signals

The time average

T T
Arle] = 21T—/T [o]dt Als] = an?oole_/T [o]dt

time average and sample average operations

Pxx = TIianP(T) = |im 21_,_/ E [X2(t)} dt
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Measuring average power

for continuous time signals

for deterministic and random signals

the average power P(T) for a deterministic signal x(t)

-
P(T) = 21T/+T 2(t)dt

the average power Pxx for a random process X(t)

'DXX = lim P( T)
T—oo

= lim 21_,_/+TE[X2(tﬂ dt
=A[E [X3(1)]]
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Power density spectrum Sxx (o)

for continuous time signals

the average power via power density

the average power Pxx for the random process X7 ()

1 E[Xr()]
Poc=3 | | im =5 ¢

=5 | (S}

the power density spectrum Sxx(®)

| ElX7(0)P]
Sxx(0)]= ==
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Properties of Power Spectrum
for continuous time signals

[*] Sxx( )ZO

@ Sxx(—)=Sxx(w) X(t) real

o Sxx(w) real

° 2 75 Sxx(w)dw = A[E [X?(1)]]

o Six(®) = 02Sxx(®)

o &L [T Sxx(w)e/® dw = A[Rxx(t, t+17)]

° Sxx( ):fj:oA[Rxx(t,t-i-T)]e*j dt
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Equations involving Sxx (@)

for continuous time signals

the average power Py, and the inverse Fourier transform of Sxx(®)

the average power related equation

;t/_:wSXX( )do = A[E [X*(t)]]

the autocorrelation related equation

+oo :
217r/ Sxx(w)e! dw = A[Rxx(t, t +7)]
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Average power related equation

for continuous time signals

the average power Py,

the average power related equation
1 [t

o | S )do = A[E [X?(1)]]

@ a random process X(t) in time domain

@ a random process X(®) in frequency domain

@ Parseval’s theorem over X7(t) <= Xr()

X(t) = lim X7(t) X(0) = lim Xr(o)

T —oo T —oo
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Average power Pxx in time / frequency domain

for continuous time signals

Using a random process X(t) in time domain

. 1 +T 2
Pxx = lim == | E [X?(1)] dt

= tim A7 [ [X3(0]] =[A[E D]

Using a random process X7 (®) in frequency domain

1 el E[[Xp ()]
PXX*E/,N Jm =7 i

{2 o0k
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Autocorrelation related equation

for continuous time signals

the Inverse Fourier transform of Sxx(®)

the average power related equation

+oo :
% Sxx(w)e/ dw = A[Rxx(t, t +7)]

@ auto-correlation function
Rxx(t,t+7) = E[X(£)X(t+7)] = Rxx(7)

@ a random process X(t) in time domain

e a random process X7 () in frequency domain
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Fourier transforms of autocorrelation functions

for continuous time signals

Fourier transform of an autocorrelation functions

oo .
Sxx(®) = Rxx(t)e“"dt

+oo .
SXX( ):/,w R)'O'((T)eij Tdt

@ auto-correlation function

Rxx(t,t417) = E[X(£)X(t 4 7)] = Rxx(7)
Rys(tt+7) = E [X(0)X(t+7)] = Rex ()

@ a random process X(t) in time domain
o X(t)= %X(t) : the derivative of X(t)
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Fourier transform of a derivative function

for continuous time signals

Definition
Fourier transform of an autocorrelation functions

x(t) = X(o)

n

dtn

x(t) = (j0)"X (o)
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Power Density Spectrum and Auto-correlation

for continuous time signals

SXX( ):.A:NA[Rxx(tt_f ‘[')] e*j “dt

%/LMSXX( )&% dw = A[Rxx (t,t +7)]
for a WSS X(t), A[Rxx(t,t+7)] = Rxx(7)

o0 .
Sxx( ):[ Rxx(‘[)eij Td’f

1 [+ o
RXX(T):%/_ Sxx(0)e " dw
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Power Spectrum and Auto-Correlation Functions

for continuous time signals

the power spectrum

+oo .
Sxx( ): Rxx(f)eij Tdt

—o0

the auto-correlation function

1 oo .
Rxx(’f):%/ Sxx( )eﬂ “do
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RMS Bandwidth

for continuous time signals

Definition

the standard deviation is
a measure of the spread in a density function.
the analogous quantity for the normalized power spectrum is
a measure of its spread that we call the rms bandwidth
(root-mean-square)

> f+°° 25xx( )dCO

—oo

Wrms - Foo
ffoo Sxx( )d(D
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RMS Bandwidth and Mean Frequency

for continuous time signals

the mean frequence @g

J72 wSxx(w)dw
/72 Sxx(w)dw

@ =
the rms bandwidth

W2 :4ff:( — @)*Sxx(®)dw
me [12 Sxx(w)dw
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