
Young Won Lim
11/25/17

Monad Background (3A)

Young Won Lim
11/25/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Monad Background (3A) 3 Young Won Lim
11/25/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Monad Background (3A) 4 Young Won Lim
11/25/17

A List Comprehension Function

let removeLower x = [c | c <- x, c `elem` ['A'..'Z']]

a list comprehension

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

removeLower x

[c |

c <- x,

 c `elem` ['A'..'Z']

]

“Hello”

[c: ‘H’

 c: ‘e’

 c: ‘l’

 c: ‘l’

 c: ‘o’]

“H”

x1 : Return value of action1

x2: Return value of action2

Monad Background (3A) 5 Young Won Lim
11/25/17

Pattern and Predicate

let removeLower x = [c | c <- x, c `elem` ['A'..'Z']]

a list comprehension

[c | c <- x, c `elem` ['A'..'Z']]

c <- x is a generator

(x : argument of the function removeLower)

c is a pattern

matching from the elements of the list x

 successive binding of c to the elements of the list x

c `elem` ['A'..'Z']

is a predicate which is applied to each successive binding of c

Only c which passes this predicate will appear in the output list

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

[c | c <- x, c `elem` ['A'..'Z']]

List

an element

a list

Monad Background (3A) 6 Young Won Lim
11/25/17

Assignment in Haskell

Assignment in Haskell : declaration with initialization:

● no uninitialized variables,
● must declare with an initial value
● no mutation
● a variable keeps its initial value throughout its scope.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Monad Background (3A) 7 Young Won Lim
11/25/17

Generator

[c| c <- x, c `elem` ['A'..'Z']]

filter (`elem` ['A' .. 'Z']) x

[c | c <- x]

do c <- x
 return c

x >>= (\c -> return c)

x >>= return

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

c: an element
x: a list

c: an element
x: an element

c: a list
x: a list

or

Monad Background (3A) 8 Young Won Lim
11/25/17

Anonymous Functions

(\x -> x + 1) 4
5 :: Integer

(\x y -> x + y) 3 5
8 :: Integer

inc1 = \x -> x + 1

incListA lst = map inc2 lst
 where inc2 x = x + 1

incListB lst = map (\x -> x + 1) lst

incListC = map (+1)

https://wiki.haskell.org/Anonymous_function

Monad Background (3A) 9 Young Won Lim
11/25/17

Then Operator (>>) and do Statements

a chain of actions

to sequence input / output operations

the (>>) (then) operator works almost identically in do notation

https://en.wikibooks.org/wiki/Haskell/do_notation

putStr "Hello" >>

putStr " " >>

putStr "world!" >>

putStr "\n"

do { putStr "Hello"

 ; putStr " "

 ; putStr "world!"

 ; putStr "\n" }

Monad Background (3A) 10 Young Won Lim
11/25/17

Chaining in do and >> notations

do { action1

 ; action2

 ; action3 }

do { action1

 ; do { action2

 ; action3 } }

do { action1

 ; do { action2

 ; do { action3 } } }

https://en.wikibooks.org/wiki/Haskell/do_notation

can chain any actions

all of which are in the same monad

action1 action2 action3

action1 >>

do { action2

 ; action3 }

action1 >>

 action2 >>

 action3

Monad Background (3A) 11 Young Won Lim
11/25/17

Bind Operator (>==) and do statements

The bind operator (>>=)

passes a value ->

(the result of an action or function),

downstream in the binding sequence.

https://en.wikibooks.org/wiki/Haskell/do_notation

anonymous function

(lambda expression)

is used

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

do notation assigns a variable name

to the passed value using the <-

Monad Background (3A) 12 Young Won Lim
11/25/17

Chaining >>= and do notations

action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2))

action1

 >>=

 (\ x1 -> action2

 >>=

 (\ x2 -> mk_action3 x1 x2))

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

https://en.wikibooks.org/wiki/Haskell/do_notation

action1

action2

mk_action3

x1

x2

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

-> <-

Monad Background (3A) 13 Young Won Lim
11/25/17

fail method

do { Just x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

O.K. when action1 returns Just x1

when action1 returns Nothing

crash with an non-exhaustive patterns error

Handling failure with fail method

action1 >>= f where

 f (Just x1) = do { x2 <- action2

 ; mk_action3 x1 x2 }

 f _ = fail "..." -- A compiler-generated message.

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

Monad Background (3A) 14 Young Won Lim
11/25/17

Example

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

 ; first <- getLine

 ; putStr "And your last name? "

 ; last <- getLine

 ; let full = first ++ " " ++ last

 ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

A possible translation into vanilla monadic code:

nameLambda :: IO ()

nameLambda = putStr "What is your first name? " >>

 getLine >>= \ first ->

 putStr "And your last name? " >>

 getLine >>= \ last ->

 let full = first ++ " " ++ last

 in putStrLn ("Pleased to meet you, " ++ full ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

using then (>>) and Bind (>>=) operators

using the do statement

Monad Background (3A) 15 Young Won Lim
11/25/17

return method

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

 first <- getLine

 putStr "And your last name? "

 last <- getLine

 let full = first ++ " " ++ last

 putStrLn ("Pleased to meet you, " ++ full ++ "!")

 return full

greetAndSeeYou :: IO ()

greetAndSeeYou = do name <- nameReturn

 putStrLn ("See you, " ++ name ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation

Monad Background (3A) 16 Young Won Lim
11/25/17

Without a return method

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

 first <- getLine

 putStr "And your last name? "

 last <- getLine

 let full = first ++ " " ++ last

 putStrLn ("Pleased to meet you, " ++ full ++ "!")

 return full

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

 ; first <- getLine

 ; putStr "And your last name? "

 ; last <- getLine

 ; let full = first ++ " " ++ last

 ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

https://en.wikibooks.org/wiki/Haskell/do_notation

no return statement

returns empty IO monad

explicit return statement

returns IO String monad

Monad Background (3A) 17 Young Won Lim
11/25/17

return method – not a final statement

nameReturnAndCarryOn :: IO ()

nameReturnAndCarryOn = do putStr "What is your first name? "

 first <- getLine

 putStr "And your last name? "

 last <- getLine

 let full = first++" "++last

 putStrLn ("Pleased to meet you, "++full++"!")

 return full

 putStrLn "I am not finished yet!"

https://en.wikibooks.org/wiki/Haskell/do_notation

the return statement does not interrupt the flow

the last statements of the sequence returns a value

Monad Background (3A) 18 Young Won Lim
11/25/17

Data Constructor

data Color = Red | Green | Blue

Color is a type

Red is a constructor that contains a value of type Color.

Green is a constructor that contains a value of type Color.

Blue is a constructor that contains a value of type Color.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad Background (3A) 19 Young Won Lim
11/25/17

Data Constructor with Parameters

data Color = RGB Int Int Int

Color is a type

RGB is not a value but a function taking three Int’s and returning a value

RGB :: Int -> Int -> Int -> Color

RGB is a data constructor that is a function

taking three Int values as its arguments,

and then uses them to construct a new value.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad Background (3A) 20 Young Won Lim
11/25/17

Type Constructor

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

a type

SBTree is a type

Leaf is a data constructor (a function)

Branch is a data constructor (a function)

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad Background (3A) 21 Young Won Lim
11/25/17

Similar Type Constructors

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

Consider a binary tree to store a parameter type

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad Background (3A) 22 Young Won Lim
11/25/17

Type Constructor with a Parameter

Type constructors

Both SBTree and BBTree are type constructors

data SBTree = Leaf String | Branch String SBTree SBTree

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor.

BTree has become a function.

It takes a type as its argument and it returns a new type.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Monad Background (3A) 23 Young Won Lim
11/25/17

Type Constructors and Data Constructors

A type constructor
● a "function" that takes 0 or more types
● gives you back a new type.

Type constructors with parameters

allows slight variations in types

A data constructor
● a "function" that takes 0 or more values
● gives you back a new value.

Data constructors with parameters

allows slight variations in values

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

RGB 12 92 27

#0c5c1b

RGB 255 0 0

RGB 0 255 0

RGB 0 0 255

type SBTree = BTree String

type BBTree = BTree Bool

Monad Background (3A) 24 Young Won Lim
11/25/17

()

() is both a type and a value.

() is a special type, pronounced “unit”,

has one value (), sometimes pronounced “void”

 the unit type has only one value which is called unit.

() :: ()

It is the same as the void type void in Java or C/C++.

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Type :: Expression

Monad Background (3A) 25 Young Won Lim
11/25/17

Unit Type

a unit type is a type that allows only one value (and thus can hold no information).

It is the same as the void type void in Java or C/C++.

:t

Expression :: Type

data Unit = Unit

Prelude> :t Unit

Unit :: Unit

Prelude> :t ()

() :: ()

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Monad Background (3A) 26 Young Won Lim
11/25/17

data Tconst Tvar … Tvar = Vconst type … type | …

 Vconst type … type

Tconst (Type Constructor) is added to the type language

Vconst (Value Constructor) is added to the expression language and its pattern sublanguage

must not appear in types

Argument types in Vconst type … type

are the types given to the arguments (Tconst Tvar … Tvar)

are used in expressions

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Type Language and Expression Language

A new datatype declaration

Monad Background (3A) 27 Young Won Lim
11/25/17

data Tree a = Leaf | Node (Tree a) (Tree a)

Tree (Type Constructor)

Leaf or Node (Value Constructor)

data () = ()

() (Type Constructor)

() (Value Constructor)

the type (), often pronounced "Unit"

the value (), sometimes pronounced "void"

the type () containing only one value ()

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Datatype Declaration Examples

data Type = Value

Monad Background (3A) 28 Young Won Lim
11/25/17

 type String = [Char]

 phoneBook :: [(String,String)]

 type PhoneBook = [(String,String)]

 phoneBook :: PhoneBook

 type PhoneNumber = String

 type Name = String

 type PhoneBook = [(Name,PhoneNumber)]

 phoneBook :: PhoneBook

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonyms

 phoneBook =

 [("betty","555-2938")

 ,("bonnie","452-2928")

 ,("patsy","493-2928")

 ,("lucille","205-2928")

 ,("wendy","939-8282")

 ,("penny","853-2492")

]

Monad Background (3A) 29 Young Won Lim
11/25/17

data Configuration = Configuration

 { username :: String

 , localHost :: String

 , currentDir :: String

 , homeDir :: String

 , timeConnected :: Integer

 }

username :: Configuration -> String -- accessor function (automatic)

localHost :: Configuration -> String

-- etc.

changeDir :: Configuration -> String -> Configuration -- update function

changeDir cfg newDir =

 if directoryExists newDir -- make sure the directory exists

 then cfg { currentDir = newDir }

 else error "Directory does not exist"

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax (named field)

Monad Background (3A) 30 Young Won Lim
11/25/17

data newtype

Data can only be replaced with newtype

if the type has exactly one constructor with exactly one field inside it.

It ensures that the trivial wrapping and unwrapping

of the single field is eliminated by the compiler.

simple wrapper types such as State are usually defined with newtype.

type : used for type synonyms

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

newtype State s a = State { runState :: s -> (s, a) }

Monad Background (3A) 31 Young Won Lim
11/25/17

newtype Fd = Fd CInt

-- data Fd = Fd CInt would also be valid

-- newtypes can have deriving clauses just like normal types

newtype Identity a = Identity a

 deriving (Eq, Ord, Read, Show)

-- record syntax is still allowed, but only for one field

newtype State s a = State { runState :: s -> (s, a) }

-- this is *not* allowed:

-- newtype Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- but this is:

– data Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- and so is this:

newtype NPair a b = NPair (a, b)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype examples

Young Won Lim
11/25/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

