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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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A List Comprehension Function 

let removeLower x = [c | c <- x,  c `elem` ['A'..'Z']]

a list comprehension 

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

removeLower x

[ c | 

c <- x,  

      c `elem` ['A'..'Z']

]

“Hello”

[ c: ‘H’

  c: ‘e’

  c: ‘l’

  c: ‘l’

  c: ‘o’  ]

“H”

x1 : Return value of action1

x2: Return value of action2
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Pattern and Predicate

let removeLower x = [c | c <- x,  c `elem` ['A'..'Z']]

a list comprehension 

[c | c <- x, c `elem` ['A'..'Z']]

 

c <- x is a generator  

(x : argument of the function removeLower)

c is a pattern 

matching from the elements of the list x

 successive binding of c to the elements of the list x 

c `elem` ['A'..'Z']

is a predicate which is applied to each successive binding of c

Only c which passes this predicate will appear in the output list

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

[ c | c <- x, c `elem` ['A'..'Z'] ]

List

an element

a list
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Assignment in Haskell 

Assignment in Haskell : declaration with initialization:

● no uninitialized variables, 
● must declare with an initial value
● no mutation
● a variable keeps its initial value throughout its scope.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell
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Generator

[c| c <- x, c `elem` ['A'..'Z']]

filter (`elem` ['A' .. 'Z']) x

[ c |  c <- x ]

do c <- x
   return c

x >>= ( \c -> return c )

x >>= return

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

action1 >>= (\ x1 ->

  action2 >>= (\ x2 ->

    mk_action3 x1 x2 ))

c: an element
x: a list 

c: an element
x: an element 

c: a list
x: a list
 

or 
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Anonymous Functions

(\x -> x + 1) 4
5 :: Integer

(\x y -> x + y) 3 5
8 :: Integer

inc1 = \x -> x + 1

incListA lst = map inc2 lst
    where inc2 x = x + 1

incListB lst = map (\x -> x + 1) lst

incListC = map (+1)

https://wiki.haskell.org/Anonymous_function
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Then Operator (>>) and do Statements

a chain of actions 

to sequence input / output operations

the (>>) (then) operator works almost identically in do notation

https://en.wikibooks.org/wiki/Haskell/do_notation

putStr "Hello"  >> 

putStr " "         >> 

putStr "world!" >> 

putStr "\n"

do { putStr "Hello"

     ; putStr " "

     ; putStr "world!"

     ; putStr "\n" }
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Chaining in do and >> notations

do { action1           

     ; action2                                                                  

     ; action3 }                                                                       

do { action1 

      ; do { action2

              ; action3 } }

do { action1 

      ; do { action2

              ; do { action3 } } }

https://en.wikibooks.org/wiki/Haskell/do_notation

can chain any actions 

all of which are in the same monad

action1 action2 action3

action1 >>

do { action2

      ; action3 }

action1 >>

   action2  >>

       action3 



Monad Background (3A) 11 Young Won Lim
11/25/17

Bind Operator (>==) and do statements

The bind operator (>>=) 

passes a value   ->

(the result of an action or function), 

downstream in the binding sequence. 

https://en.wikibooks.org/wiki/Haskell/do_notation

anonymous function  

(lambda expression)

is used 

action1 >>= (\ x1 ->

  action2 >>= (\ x2 ->

    mk_action3 x1 x2 ))

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

do notation assigns a variable name 

to the passed value using the <-
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Chaining >>= and do notations

action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2 ))

action1

  >>=

    (\ x1 -> action2

       >>=

         (\ x2 -> mk_action3 x1 x2 ))

action1 >>= (\ x1 ->

  action2 >>= (\ x2 ->

    mk_action3 x1 x2 ))

https://en.wikibooks.org/wiki/Haskell/do_notation

action1

action2

mk_action3

x1

x2

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

-> <-
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fail method

do { Just x1 <- action1

      ;        x2 <- action2

      ; mk_action3 x1 x2     }

O.K. when action1 returns Just x1 

when action1 returns Nothing 

crash with an non-exhaustive patterns error 

Handling failure with fail method

action1 >>= f where

     f (Just x1) = do { x2 <- action2

                                 ; mk_action3 x1 x2 } 

     f _             = fail "..." -- A compiler-generated message.

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }
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Example

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

                        ; first <- getLine

                        ; putStr "And your last name? "

                        ; last <- getLine

                        ; let full = first ++ " " ++ last

                        ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

A possible translation into vanilla monadic code:

nameLambda :: IO ()

nameLambda = putStr "What is your first name? " >>

                           getLine >>= \ first ->

 putStr "And your last name? " >>

                           getLine >>= \ last ->

                           let full = first ++ " " ++ last

                           in putStrLn ("Pleased to meet you, " ++ full ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

using then (>>) and Bind (>>=) operators

using the do statement
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return method 

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

                         first <- getLine

                         putStr "And your last name? "

                         last <- getLine

                         let full = first ++ " " ++ last

                         putStrLn ("Pleased to meet you, " ++ full ++ "!")

                         return full

greetAndSeeYou :: IO ()

greetAndSeeYou = do name <- nameReturn

                                      putStrLn ("See you, " ++ name ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation
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Without a return method 

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

                         first <- getLine

                         putStr "And your last name? "

                         last <- getLine

                         let full = first ++ " " ++ last

                         putStrLn ("Pleased to meet you, " ++ full ++ "!")

                         return full

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

                        ; first <- getLine

                        ; putStr "And your last name? "

                        ; last <- getLine

                        ; let full = first ++ " " ++ last

                        ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

https://en.wikibooks.org/wiki/Haskell/do_notation

no return statement

returns empty IO monad 

explicit return statement

returns IO String monad 
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return method – not a final statement 

nameReturnAndCarryOn :: IO ()

nameReturnAndCarryOn = do putStr "What is your first name? "

                                first <- getLine

                               putStr "And your last name? "

                               last <- getLine

                               let full = first++" "++last

                               putStrLn ("Pleased to meet you, "++full++"!")

                               return full

                               putStrLn "I am not finished yet!"

https://en.wikibooks.org/wiki/Haskell/do_notation

the return statement does not interrupt the flow 

the last statements of the sequence returns a value
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Data Constructor 

data Color = Red | Green | Blue

Color is a type

Red is a constructor that contains a value of type Color. 

Green is a constructor that contains a value of type Color. 

Blue  is a constructor that contains a value of type Color. 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Data Constructor with Parameters 

data Color = RGB Int Int Int

Color is a type

RGB is not a value but a function taking three Int’s and returning a value

RGB :: Int -> Int -> Int -> Color

RGB is a data constructor that is a function 

taking three Int values as its arguments, 

and then uses them to construct a new value. 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructor 

Consider a binary tree to store Strings

data SBTree = Leaf String  |   Branch String SBTree SBTree

a type 

SBTree is a type 

Leaf is a data constructor (a function)

Branch  is a data constructor (a function)

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Similar Type Constructors

Consider a binary tree to store Strings

data SBTree = Leaf String  |   Branch String SBTree SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool  |  Branch Bool BBTree BBTree

Consider a binary tree to store a parameter type

data BTree a = Leaf a  |   Branch a (BTree a) (BTree a)

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructor with a Parameter

Type constructors

Both SBTree and BBTree are type constructors 

data SBTree = Leaf String  |   Branch String SBTree SBTree

data BBTree = Leaf Bool   |  Branch Bool BBTree BBTree

data BTree a = Leaf a  |   Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor. 

BTree has become a function. 

It takes a type as its argument and it returns a new type.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructors and Data Constructors

A type constructor  
● a "function" that takes 0 or more types 
● gives you back a new type.

Type constructors with parameters 

allows slight variations in types

A data constructor  
● a "function" that takes 0 or more values 
● gives you back a new value.

Data constructors with parameters 

allows slight variations in values 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

RGB 12 92 27

#0c5c1b

RGB 255 0 0 

RGB 0 255 0 

RGB 0 0 255 

type SBTree = BTree String

type BBTree = BTree Bool
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( )  

( ) is both a type and a value. 

( ) is a special type,  pronounced “unit”, 

has one value ( ), sometimes pronounced “void” 

 the unit type has only one value which is called unit.

( ) :: ( )    

It is the same as the void type void in Java or C/C++. 

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Type :: Expression
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Unit Type 

a unit type is a type that allows only one value (and thus can hold no information).

It is the same as the void type void in Java or C/C++. 

:t

Expression :: Type

data Unit = Unit

Prelude> :t Unit 

Unit :: Unit

Prelude> :t ()

() :: ()

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean
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data Tconst Tvar … Tvar = Vconst type … type |  … 

        Vconst type … type  

Tconst (Type Constructor) is added to the type language

Vconst (Value Constructor) is added to the expression language  and its pattern sublanguage 

must not appear in types 

Argument types in Vconst type … type 

are the types given to the arguments (Tconst Tvar … Tvar)  

are used in expressions 

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Type Language and Expression Language 

A new datatype declaration 
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data Tree a = Leaf |  Node (Tree a) (Tree a) 

Tree (Type Constructor) 

Leaf or Node (Value Constructor) 

data ( ) = ( )

( ) (Type Constructor) 

( ) (Value Constructor)

 

the type (), often pronounced "Unit"

the value (), sometimes  pronounced "void" 

the type () containing only one value ()

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Datatype Declaration Examples

data Type = Value
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    type String = [Char]      

    phoneBook :: [(String,String)]  

    type PhoneBook = [(String,String)]  

    phoneBook :: PhoneBook 

    type PhoneNumber = String  

    type Name = String  

    type PhoneBook = [(Name,PhoneNumber)] 

    phoneBook :: PhoneBook 

 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonyms

    phoneBook =      

        [("betty","555-2938")     

        ,("bonnie","452-2928")     

        ,("patsy","493-2928")     

        ,("lucille","205-2928")     

        ,("wendy","939-8282")     

        ,("penny","853-2492")     

        ] 
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data Configuration = Configuration

    { username   :: String

    , localHost     :: String

    , currentDir    :: String

    , homeDir     :: String

    , timeConnected :: Integer

    }

username :: Configuration -> String -- accessor function  (automatic) 

localHost :: Configuration -> String

-- etc.

changeDir :: Configuration -> String -> Configuration -- update function 

changeDir cfg newDir =

    if directoryExists newDir -- make sure the directory exists

        then cfg { currentDir = newDir }

        else error "Directory does not exist"

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax (named field) 
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data newtype

Data can only be replaced with newtype

if the type has exactly one constructor with exactly one field inside it. 

It ensures that the trivial wrapping and unwrapping 

of the single field is eliminated by the compiler. 

simple wrapper types such as State are usually defined with newtype.

type : used for type synonyms

 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

newtype State s a = State { runState :: s -> (s, a) }
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newtype Fd = Fd CInt

-- data Fd = Fd CInt would also be valid

 

-- newtypes can have deriving clauses just like normal types

newtype Identity a = Identity a

  deriving (Eq, Ord, Read, Show)

 

-- record syntax is still allowed, but only for one field

newtype State s a = State { runState :: s -> (s, a) }

 

-- this is *not* allowed:

-- newtype Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- but this is:

– data Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- and so is this:

newtype NPair a b = NPair (a, b)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype examples
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