Monad P3 : Types (1A)

1

Copyright (c) 2016 - 2020 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

2

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

data, newtype, type

```
• data is for making <u>new</u>, <u>complicated</u> types,
```

```
data Person = Bob | Cindy | Sue
```

```
    newtype is for "<u>decorating</u>" or <u>making a copy</u> of an existing type,
newtype Dollar = Dollar Double
```

```
    type is for <u>renaming a type</u>,
    type Polygon = [Point]
```

just makes **Dollar** be equivalent to **Double** and

is mostly only used for making certain code easier to read.

data, newtype, type

data: zero or more constructors,

each can contain zero or more values.

newtype: similar to data

but <u>exactly one</u> constructor

and only one value in that constructor,

and has the exact same runtime representation

as the **value** that it stores.

type: **type synonym**, compiler more or less forgets about it once it is expanded.

data

data - creates new algebraic type with value constructors

- Can have <u>several</u> <u>value</u> constructors
- Value constructors are <u>lazy</u>
- Values can have several fields
- Affects both compilation and runtime, have runtime overhead
- Created type is a <u>distinct new type</u>
- Can have its own type class instances
- When pattern matching against value constructors,
 WILL be <u>evaluated</u> at least to weak head normal form (WHNF) *
- Used to create new data type

(example: Address { zip :: String, street :: String })

newtype

newtype - creates new "decorating" type with value constructor

- Can have <u>only</u> <u>one</u> <u>value</u> <u>constructor</u>
- Value constructor is strict
- Value can have only one field
- Affects only compilation, no runtime overhead
- Created type is a <u>distinct new type</u>
- Can have its own type class instances
- When pattern matching against value constructor, CAN be not evaluated at all *
- Used to create *higher level concept* based on existing type with distinct set of supported operations or that is not interchangeable with original type (example: Meter, Cm, Feet is Double)

type

type - creates an alternative name (synonym) for a type (typedef in C)

- <u>No value constructors</u>
- <u>No fields</u>
- Affects only compilation, <u>no runtime overhead</u>
- <u>No new type</u> is created (only a new name for existing type)
- Can <u>NOT</u> have its own type class instances
- When pattern matching against **data constructor**, behaves the same as original type
- Used to create higher level concept based on existing type with the same set of supported operations (example: String is [Char])

Data definition without data constructors (1)

a data definition without data constructors

cannot be instantiated

data B

a new type constructor B,

but no data constructors

to <u>produce</u> values of type B

In fact, such a data type is declared in the Haskell base: $\ensuremath{\textbf{Void}}$

ghci> import Data.Void

ghci> :i Void

data Void -- Defined in 'Data.Void'

https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Data definition without data constructors (2)

Being able to have <u>uninhabited</u> types turns out to be useful in some areas

passing an uninhabited type

as a type parameter

to another type constructor

https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Data definition with data constructors

```
data B = String
```

a **type constructor B** and a **data constructor String**, both taking <u>no arguments</u>.

Note that the **String** you define is in the **value namespace**, so is different from the usual **String type constructor**.

```
ghci> data B = String
ghci> x = String
ghci> :t x
x :: B
```

https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Newtype – wrap

wrap one type <u>in another type</u> and A new **type** is *almost the same* as an original **type**

represented the same as the original type in memory, zero runtime penalty for using a **newtype**

newtype Dollars = Dollars Int

to convert the *uninformative type* **Int** into a more *descriptive type*, **Dollars**.

to make a value of **Dollars**,

Dollars 3

Newtype – examples using data

a **Dollar** type, a **Yen** type, and a **Euro** type all just **wrappers** around **Double**

data Dollar = Dollar	Double	deriving (Read, Show)
data Euro = Euro	Double	deriving (Read, Show)
data Yen = Yen	Double	deriving (Read, Show)

Let a Currency typeclass has

a convertToDollars

and **convertFromDollars** function.

Then, let's add, subtract, and multiply the currency

Newtype – inferring typeclasses

To add, subtract, and multiply the currency

- use a data definition and an instance of the Num typeclass
- use a newtype definition and automatic derivation of the Num typeclass
 {-# LANGUAGE GeneralizedNewtypeDeriving #-}

Newtype – using instance

In order to **add** or **subtract** two Dollars. use an **instance** of the **Num typeclass**

```
instance Num Dollar where
```

(Dollar a) + (Dollar b) = Dollar (a + b) (Dollar a) - (Dollar b) = Dollar (a - b) (Dollar a) * (Dollar b) = Dollar (a * b) negate (Dollar a) = Dollar (-a) abs (Dollar a) = Dollar (abs a)

instance Num Euro where ...

instance Num Yen where ...

Newtype – examples using **newtype**

Wrapping one type (**Double**) in another (**Dollar**) is needed so frequently, that there is a special syntax for it **newtype**.

newtype Dollar = Dollar	Double	deriving (Read, Show)
newtype Euro = Euro	Double	deriving (Read, Show)
newtype Yen = Yen	Double	deriving (Read, Show)
data Dollar = Dollar Do	ouble deri	ving (Read, Show)
data Euro = Euro Do	ouble deri	ving (Read, Show)
data Yen = Yen Do	ouble deri	ving (Read, Show)

Newtype – to derive typeclass automatically

The main difference between using **newtype** and **data** is that newtype only works with the very simple cases of wrapping one type in one other type. Still, we cannot sum types or have multiple types wrapped up in one. a special GHC feature derives automatically <u>ncessary</u> typeclasses Enabled by {-# LANGUAGE GeneralizedNewtypeDeriving #-} at the top of your code (a pragma to turn on a language extension)

Newtype – examples using a directive

{-# LANGUAGE GeneralizedNewtypeDeriving #-}		
newtype Dollar = Dolla newtype Euro = Euro newtype Yen = Yen	r Double Double Double	deriving (Read, Show) deriving (Read, Show) deriving (Read, Sho
the Num type class is derived automatically		
(Dollar 3) + (Dollar 4) Dollar 7.0.		

Single constructors of **newtype** and **data**

Both newtype and the single-constructor data introduce a single data constructor, but the data constructor introduced by **newtype** is **strict** and the single data constructor introduced by **data** is **lazy**. data D = D Int -- lazy newtype N = N Int -- strict

Strict evaluation of **undefined**

Haskell tries to only <u>evaluate</u> things <u>only when</u> they are really <u>necessary</u>,

if you write **1+2** it won't actually evaluate that <u>until it needs to</u>. (**lazy by default**)

a special value named undefined (bottom)

If **undefined (bottom)** is pass to any function then your program instantly crash when it is evaluated.

data (lazy), newtype (strict)

data D = D Int newtype N = N Int	lazy strict	
But D undefined is <u>ne</u> and it can be evaluat you do <u>not</u> try to	ot equivalent to undefined , ed as long as o <u>peek inside</u> .	lazy
Then N undefined is and causes an error undefined is eva	equivalent to undefined when evaluated. aluated strictly	strict

Algebraic type – sum and product

This is a type where we <u>specify</u> the **shape** of each of the **elements**.

Algebraic refers to the property that an Algebraic Data Type is created by algebraic operations.

The algebra here is sums and products:

sum is alternation (A | B, meaning A or B but not both)
product is combination (A B, meaning A and B together)

http://wiki.haskell.org/Algebraic_data_type

Algebraic type – examples

data Pair = P Int Double	product (combination)
a pair of numbers, an Int and a Double together. The tag P is used (in constructors and pattern matching) to <u>combine</u> the contained <u>values</u> into a <u>single structure</u> that can be assigned to a variable.	
data Pair = Int D Double	sum (alternation)
just one number, <u>either</u> an Int <u>or</u> else a Double . the tags I and D are used (in constructors and pattern matching) to distinguish between the two alternatives.	

http://wiki.haskell.org/Algebraic_data_type

Algebraic type – ADT and GADT

Sums and **products** can be <u>repeatedly</u> combined into an arbitrarily large structures.

Algebraic Data Type is <u>not</u> to be confused with *Abstract* Data Type,

which (ironically) is its opposite, in some sense.

The initialism **ADT** usually means ***Abstract* Data Type**,

but **GADT** usually means **Generalized Algebraic Data Type**.

http://wiki.haskell.org/Algebraic_data_type

Type classes

Type classes allow us

to declare

which types are instances of which class, and

to provide

definitions of the <u>overloaded</u> operations associated with a **class**.

Type class definition

For example, let's <u>define</u> a **type class** containing an **equality operator**:

class Eq a where

(==)

:: a -> a -> Bool

Eq is the name of the class being defined,== is the single operation in the class.

a **type a** is an **instance** of the **class Eq** if there is an (**overloaded**) **operation ==**, of the appropriate **type**, defined on it.

(Note that == is only defined on pairs of objects of the same type.)

		type
class	Eq	a
	class name	class instance

Type class constraint

Eq a expresses a constraint that

a type a must be an instance of the class Eq

Eq a

- not a type expression ٠
- expresses a constraint on a type ٠
- called a context ٠
- placed at the front of type expressions •

context : a constraint on a type

class class instance name

for every **type a** that is an instance of the class Eq

Type class constraint examples

For example, the effect of the above class declaration is to assign the following type to ==:

(==) :: (Eq a) => a -> a -> Bool

for every **type a** that is an **instance** of the **class Eq**, == has <u>type</u> **a->a->Bool**

```
elem :: (Eq a) => a -> [a] -> Bool
```

for every **type a** that is an **instance** of the **class Eq**, **elem** has <u>type</u> **a**->[**a**]->Bool

Type class instances

An instance declaration specifies

which types are **instances** of the **class Eq**, and the <u>actual behavior</u> of **==** on each of those **types**

instance Eq Integer where

x == y = x `integerEq` y

the **definition** of **==** is called a **method**. **integerEq** happens to be the **primitive function** in general, any valid expression for a function definition

class class name instance

Type class instance examples

instance Eq Integer where

x == y = x `integerEq` y

the **type Integer** is an **instance** of the **class Eq** the definition of the **method ==**

instance Eq Float where

x == y = x `floatEq` y

the **type Float** is an **instance** of the **class Eq** the definition of the **method ==**

Type class analogy with OOPs

simply substituting **type class** for **class**, and **type** for **object**, yields a valid summary of Haskell's **type class mechanism**:

"Classes capture common sets of operations. A particular object may be an instance of a class, and will have a method corresponding to each operation.

Classes may be arranged **hierarchically**, forming notions of **superclasses** and **sub classes**, and permitting **inheritance** of operations/methods.

A default method may also be associated with an operation."

Haskell	OOP
type class	class
type	object

Type class is not an object

In contrast to OOP, it should be clear that

types are <u>not</u> objects,

and in particular

there is <u>no notion</u> of an **object's** or

type's internal mutable state.

Type class method is type safe

An advantage over some OOP languages is that **methods** in Haskell are completely <u>type-safe</u>:

any attempt to apply a **method** to a **value** whose **type** is not in the required **class** will be <u>detected</u> <u>at compile time</u> instead of at runtime.

In other words, **methods** are <u>not</u> "looked up" <u>at runtime</u> but are <u>simply passed</u> as **higher-order functions**.

Haskell functions can take functions as parametersand return functions as return values.A function that does either of those is called a higher order function.

Bottom Value

Bottom

bottom in Haskell specifically called **undefined**. This is only one form of it though technically **bottom** is also a <u>non-terminating computation</u>, such as length [1..]

bottom is used to represent an expression which is

- not computable
- <u>runs forever</u>
- <u>never returns</u> a value
- throws an exception
- etc.

Bottom represents computations

The term **bottom** refers to

a computation which never completes successfully.
a computation that fails due to some kind of error,
a computation that just goes into an infinite loop (without returning any data).

The mathematical symbol for bottom is ' \perp '. In plain ASCII, '_|_'.

https://wiki.haskell.org/Bottom

Bottom – a member of any type

Bottom is a member of any type,

even the trivial type () or

the equivalent simple type:

data Unary = Unary

https://wiki.haskell.org/Bottom

Types (1A)

Bottom – definitions

Bottom can be expressed in Haskell thus:

bottom = bottom

bottom = error "Non-terminating computation!"

Indeed, the Prelude exports a function

undefined = error "Prelude.undefined"

Other implementations of Haskell, such as Gofer, defined bottom as: undefined | False = undefined

The type of bottom is arbitrary, and defaults to the most general type: **undefined :: a**

https://wiki.haskell.org/Bottom

Bottom – Usage

As **bottom** is an **inhabitant** of every **type** a value of every type **bottoms** can be used wherever a value of that type would be. This can be useful in a number of circumstances: -- For leaving a todo in your program to come back to later: foo = undefined -- When dispatching to a type class instance: print (sizeOf (undefined :: Int)) -- When using laziness: print (head (1 : undefined))

https://wiki.haskell.org/Bottom

Bottom Rule

if x is <u>computable</u> , then <u>strict f x evaluates</u> to f x ,	
but if x is <u>not</u> <u>computable</u> , then <u>strict f x</u> evaluates to " <u>not computable</u> ".	undefined undefined
for example, f x = 2 * x .	
consider f (1 / 0) can't <mark>evaluate</mark> it because you can't <mark>evaluate</mark> (1 / 0)	
<pre>(1 / 0) not computable f (1 / 0) not computable</pre>	

strict f x

Sometimes it is necessary

to <u>control</u> <u>order</u> of <u>evaluation</u> in a **lazy** functional program.

Use the computable function strict,

strict f x = if $x \neq \bot$ then f x else \bot .

Operationally, strict f x is reduced by

first reducing **x** to weak head normal form (WHNF)

and then $\underline{reducing}$ the application f x.

Alternatively, it is safe to <u>reduce</u> \mathbf{x} and $\mathbf{f} \mathbf{x}$ <u>in parallel</u>, but <u>not</u> allow <u>access</u> to the result <u>until</u> \mathbf{x} is in **WHNF**.

Classifying types – Summary

Boxed	a pointer to a heap object.	Boxed	pointer box
Unboxed	no_ pointer		
Lifted	bottom <u>as an element</u> .		
Unlifted	no extra values .	(a value that is
Algebraic	one or more constructors,		yet to be evaluated
Primitive	a built-in type		
		L	
		Lifted	lifted by bottom
		A A A Bott	tom
			Jndefined Infinite loop

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Types	(1A)
-------	------

Exception

(Un)Lifted and (Un)Boxed types

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

Bottom in a programming language

programming language :

bottom refers to a value that is <u>less defined</u> than any other.

It's common to assign the **bottom value** to every computation that either produces an **error** or **fails** to **terminate**,

because trying to <u>distinguish</u> these conditions which greatly <u>weakens</u> the mathematics and

complicates program analysis.

Bottom in an order theory

order theory (particularly lattice theory) : The bottom element of a <u>partially ordered set</u>,

if one exists, is the one that precedes all others.

Bottom in a lattice theory

Lattice theory the logical false value is the bottom element of a lattice of truth values, and true is the top element

classical logic

these are the only two – true and false

but one can also consider logics

with infinitely many truthfulness values,

such as intuitionism and various forms of constructivism.

These take the notions in a rather different direction.

Bottom in a standard Boolean logic

standard Boolean logic

the symbol \perp read **falsum** or **bottom**,

is simply a <u>statement</u> which is <u>always</u> <u>false</u>,

the equivalent of the false constant in programming languages.

The form is an inverted (upside-down) version of the symbol \top (**verum** or **top**), which is the equivalent of <u>true</u> - and there's mnemonic value in the fact that the symbol looks like a capital letter T.

Bottom – verum an falsum

The names **verum** and **falsum** are Latin for "**true**" and "**false**"; the names "**top**" and "**bottom**" come from the use of the symbols in the **theory** of **ordered sets**, where they were chosen based on the location of the horizontal crossbar

Bottom – computability theory

computability theory, \perp is also the value of an **uncomputable computation**, so you can also think of it as the **undefined value**.

It doesn't matter <u>why</u> the <u>computation</u> is <u>uncomputable</u> whether because it has **undefined inputs**, or **never terminates**, or whatever.

it defines **strict** as a **function** that makes any <u>computation</u> (another <u>function</u>) **undefined** whenever its <u>inputs</u> (<u>arguments</u>) are **undefined**.

WHNF (Weak Head Normal Form)

An expression in normal form

is <u>fully</u> <u>evaluated</u>,

contains <u>no un-evaluated thunks</u>

no sub-expression could be evaluated any further

Normal Form Examples

in normal form:

42

(2, "hello")

\x -> (x + 1)

not in normal form:

1 + 2	we could <u>evaluate</u> this to 3
(\x -> x + 1) 2	we could apply the function
"he" ++ "llo"	we could <u>apply</u> the (++)
(1 + 1, 2 + 2)	we could <u>evaluate</u> 1 + 1 and 2 + 2

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Types (1A)

Head – outermost function application

The **head** in **WHNF** (Weak Head Normal Form) does <u>not</u> refer to the **head** of a **list**, but to the <u>outermost</u> function application.

thunks

generally refer to **unevaluated expressions**

HNF (Head normal form) is <u>irrelevant</u> for Haskell.
It differs from WHNF in that
the <u>bodies</u> of <u>lambda</u> expressions
are also <u>evaluated</u> to some extent.

NF is WHNF

Weak Head Normal Form Test

To determine whether an expression is in weak head normal form, we <u>only</u> have to look at the **outermost part** of the expression.

If the outermost part of the expression

is a data constructor or a lambda,

then it is in **weak head normal form**.

is a function application,

then it is <u>not</u> in **weak head normal form**.

Evaluation Example

outermost application from left to right; lazy evaluation. Example: **take 1 (1:2:3:[])** => { apply **take** } 1: take (1-1) (2:3:[]) => { apply (-) } **1** : take 0 (2:3:[]) => { apply take } 1:[]

Reduced Normal Form

evaluation stops when there are

no more function applications left to replace.

the result is in normal form

(or reduced normal form, **RNF**).

no unevaluated subexpressions

Lazy Evaluation

No matter in which **order** you <u>evaluate</u> an expression, you will always end up with the <u>same</u> **normal form** (but <u>only</u> if the <u>evaluation</u> <u>terminates</u>).

There is a slightly different description for **lazy evaluation**.

Namely, it says that you should <u>evaluate everything</u> to <u>weak head normal form</u> (**WHNF**) <u>only</u>.

The head of the expression

There are precisely three cases for an expression to be in WHNF:

A constructor: constructor expression_1 expression_2 ... A built-in function with too few arguments, like (+) 2 or sqrt A lambda-expression: \x -> expression

In other words, the **head** of the **expression** (i.e. the **outermost function application**) <u>cannot</u> be evaluated any further, but the <u>function argument</u> may contain <u>unevaluated expressions</u>.

Weak Head Normal Form Test

in weak head normal form:

(1 + 1, 2 + 2)	the outermost part is the <u>data</u> <u>constructor</u> (,)
----------------	--

- \x -> 2 + 2 -- the outermost part is a <u>lambda abstraction</u>
- 'h': ("e" ++ "llo") -- the outermost part is the <u>data constructor</u> (:)

As mentioned, all the normal form expressions listed above are also in weak head normal form.

not in weak head normal form:

1 + 2	the outermost part here is an <u>application</u> of (+)
(\x -> x + 1) 2	the outermost part is an <u>application</u> of $(x \rightarrow x + 1)$
"he" ++ "llo"	the outermost part is an <u>application</u> of (++)

in normal form: 42 (2, "hello") \x -> (x + 1)

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Types (1A)

References

- [1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
- [2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf