Sec. 5
EGM 3520 Mechanics of Materials (MoM)
Beer et al. 2012, Mechanics of Materials, McGraw-Hill.

$$
\text { P1.41, p. } 37
$$

Link $A B$ is to be made of a steel for which the ultimate normal stress is 450 MPa . Determine the cross-sectional area of $A B$ for which the factor of safety will be 3.50 . Assume that the link will be adequately reinforced around the pins at A and B.

Pause video NOW!

Work out the next step

\rightarrow individually first
\rightarrow discuss with teammates if you get stuck
then continue to watch the video

$F_{A B}$

Pause video NOW!

Work out the next step

\rightarrow individually first
\rightarrow discuss with teammates if you get stuck
then continue to watch the video

Method
$Q=20 \mathrm{kN}$
$q=8 \mathrm{kN} / \mathrm{m}$
Resultant force due to distributed load
$P=q \cdot \overline{B E}$
3 unknowns: $\quad F_{A B} \quad D_{x} \quad D_{y}$
3 eggs for 2-D static equilibrium
Find $F_{A B}$ using sum of moments about point D :

$$
\left.\sum_{i} M_{i}\right|_{D}=0
$$

Link $A B$ adequately reinforced around the pin, so it will not fail at the pin, but would fail in the link itself.

So need to design the smallest cross section in link $A B$ that can withstand the ultimate normal stress with a F.S. = 3.50, i.e., the maximum normal stress in link $A B$ should be:

$$
\sigma_{A B, \max }=\frac{\sigma_{u l t}}{\mathrm{~F} . \mathrm{S}}
$$

$$
\sigma_{A B}=\frac{F_{A B}}{A_{A B}} \Rightarrow \sigma_{A B, \max }=\frac{F_{A B}}{A_{A B, \min }}
$$

Hence the smallest cross section area in link $A B$ is
$A_{A B, \min }=\frac{F_{A B}}{\sigma_{A B, \max }}=\frac{F_{A B} \cdot \mathrm{~F} . \mathrm{S} .}{\sigma_{u l t}}$
$A _\{A B, \min \}=\backslash f r a c\left\{F _\{A B\}\right\}\{\backslash$ sigma_\{AB, $\left.\max \}\right\}=\backslash f r a c\left\{F _\{A B\} \backslash c d o t \backslash \operatorname{text}\{F . S\}.\right\}\{\backslash$ sigma_\{ult $\left.\}\right\}$

Pause video NOW!

Work out the next step

\rightarrow individually first
\rightarrow discuss with teammates if you get stuck
then continue to watch the video

Computation

(3) p.5-4:
$P=q \cdot \overline{B E}=8 \mathrm{kN} / \mathrm{m} \cdot 1.2 \mathrm{~m}$
$P=q \backslash c$ dot loverline $\{B E\}=8 \backslash, k N / m \backslash c d o t 1.2 \backslash, m$
(4) p.5-4:
$\left.\sum_{i} M_{i}\right|_{D}=0$

$$
=\overline{D G} \cdot P+\overline{D C} \cdot Q-\overline{D B} \cdot F_{A B} \sin 35^{\circ}
$$

\sum_i \eft. M_i \right|_D = $0=$ loverline\{DG\} \cdot $P+$ loverline\{DC\} \cdot Q - \overline\{DB\} $\backslash c d o t F _\{A B\} \backslash \sin 35^{\wedge} \backslash c i r c$
(3) $p .5-5:$
$A_{A B, \min }=\frac{F_{A B} \cdot \mathrm{~F} . \mathrm{S} .}{\sigma_{u l t}}$
$\sigma_{u l t}=450 M P a$

Additional questions

Review the example with a simple-shear connection in Beer 2012 p. 14 fig.1.22, or in the lecture notes Oler. 1 p.3-15, as shown below:

Fig.1.22

(a)

(b)

Fig. 1.23
The rod has a flat end at point C, with the rectangular cross section 20 mm (base) $\times 40 \mathrm{~mm}$ (height); the pin at point C has a diameter of 25 mm .

Assume that the pins at A and B in P1. 41 p. 37 is of the same type as shown above. Bar AB has a rectangular cross section with a base (thickness) of $b=20 \mathrm{~mm}$ and a heigth (depth) h to be determined.

1. The pin diameter is $d=25 \mathrm{~mm}$.

Find the pin bearing stress $\sigma_{b, A B}$ in bar $A B$ at point A, and determine the F.S. of this pin bearing stress.
If this F.S. is less than 3.50, find a new pin diameter for which the F.S. is 3.50 .
2. Find the height h of the cross section such that the normal stress in bar AB has a F.S. of 3.50.
The normal stress at the cross section of bar AB that passes through the pin is $\left(\sigma_{A B}\right)_{\text {end }}$.

Pause video NOW!

Work out the next step

\rightarrow individually first
\rightarrow discuss with teammates if you get stuck
then continue to watch the video

Pin bearing stress at point A

$$
\begin{align*}
& \sigma_{b, A B}=\frac{F_{A B}}{d b}=\frac{F_{A B}}{(25 m m)(20 m m)} \tag{1}\\
& \text { F.S. }=\frac{\sigma_{u l t}}{\sigma_{b, A B}}
\end{align*}
$$

If this F.S. is less than 3.50 , then calculate the new pin diameter with the maximum allowable pin bearing stress:

$$
\left(\sigma_{b, A B}\right)_{\max }=\frac{\sigma_{u l t}}{3.50}=\frac{F_{A B}}{d_{\min } b} \Rightarrow d_{\min }=\frac{F_{A B} \times 3.50}{\sigma_{u l t} b}
$$

$=\backslash f r a c\left\{\bar{F} _\{A B\}\right.$ \times 3.50$\}\{\backslash$ sigma_\{ult $\left.\} \backslash, b\right\}$
Another way to find the minimum pin diameter is to use the minimum area in bar AB for a F.S. of 3.50 in (3) p.5-6, i.e.,
$A_{A B, \min } \leq d_{\min } b \Rightarrow d_{\min }=\frac{A_{A B, \min }}{b}$
$A _\{A B, \min \} \backslash$ le d_\{min\} b VRightarrow d_\{min\} $=\backslash \operatorname{frac}\left\{A _\{A B, \min \}\right\}\{b\}$
Clearly, (3) and (4) are the same due to (3) p.5-6.

The smallest area in the bar $A B$ is where the pin is located at point A, and is equal to:

$$
A_{A B, p i n}=\left(h-d_{\text {min }}\right) b
$$

$$
\begin{equation*}
\sigma_{A B, p i n}=\frac{F_{A B}}{A_{A B, p i n}}=\frac{\sigma_{u l t}}{3.50} \tag{2}
\end{equation*}
$$

The minimum height h can be found from (1) and (2).
Another way is to use (3) p.5-6:
$A_{A B, \text { min }} \leq A_{A B, p i n}$

