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Differentials
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A triangle and its slope

y = f x 

f x1  h − f x1

h

 x1, f  x1

 x1  h , f  x1  h 

 x1, f  x1

http://en.wikipedia.org/wiki/Derivative

x1 x1+h

f (x1+h)

f (x1)
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Many smaller triangles and their slopes

f ( x1)

(x1, f (x1))

f ( x1+h2)

f ( x1+h1)

f ( x1+h)

f (x1 + h) − f ( x1)

h

f (x1 + h1) − f (x1)

h1

f (x1 + h2) − f (x1)

h2

lim
h→ 0

f (x1 + h) − f (x1)

h

x1 x1+h2 x1+h1 x1+h

(x1+h , f (x1+h))

h2

h1
h

(x1, f (x1))

(x1+h , f (x1+h))

http://en.wikipedia.org/wiki/Derivative
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The limit of triangles and their slopes

y = f x 

f ' (x1) = lim
h→0

f (x1 + h) − f (x1)

h

The derivative of the function f at x1

http://en.wiktionary.org/

f ' (x) = lim
h→0

f (x + h) − f (x)
h

=
df
dx

=
d
dx

f (x)

The derivative function of the function f

y ' = f ' (x)
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The derivative as a function

y = f x  x1

x2

x3

f  x1

f  x2

f  x3

f x 

x1

x2

x3

f ' x 1

f ' x 2

f ' x 3

f ' x 

= lim
h→0

f (x + h) − f (x)
h

y ' = f ' (x)

Derivative Function
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The notations of derivative functions

x1

x2

x3

f ' x 1

f ' x 2

f ' x 3

f ' (x)

lim
h→0

f (x + h) − f (x )

h

y ' = f ' x 

Largrange's Notation

dy
dx

=
d
dx

f (x)

Leibniz's Notation

ẏ = ḟ x 

Newton's Notation

D x y = D x f x 

Euler's Notation

not a ratio.

● derivative with respect to x
● x is an independent variable

slope of a 
tangent line



Derivatives (1A) 9 Young Won Lim
1/28/16

Another kind of triangles and their slope

y = f x 

f

y ' = f ' x 

given x1

the slope of a tangent line

http://en.wikipedia.org/wiki/Derivative
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Differential in calculus

x1 x1  dx

f  x1

f  x1  dx 

dx

dy

Differential: dx, dy, … 
● infinitesimals
● a change in the linearization of a function
● of, or relating to differentiation

the linearization of a function

function

http://en.wikipedia.org/wiki/Derivative

f  x1

f  x1  dx 
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Approximation

x1 x1  dx

f  x1

f  x1  dx 

dx

dy

Differential: dx, dy, … 

the linearization of a function

function

http://en.wikipedia.org/wiki/Derivative

f  x1

f  x1  dx 

f (x1 + dx ) ≈ f (x1) + dy

= f (x1) + f ' (x1)dx

f ' (x1) = lim
h→0

f (x1 + h) − f (x1)

h
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Differential as a function 

x1

f (x1)

Line equation in the new coordinate.

dx

dy
dy = f ' (x1) dx

slope = f ' (x1)

http://en.wikipedia.org/wiki/Derivative

dx1 dx2 dx3

dy1 dy2 dy3

=
dy1

dx1

=
dy2

dx2

=
dy3

dx3
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dy = f ' (x) dx

dy
dx

= f ' (x)

ratio not a ratio

dy =
df
dx

dx

Differentials and Derivatives (1)

differentials derivative
x1

f (x1)

dx

dy
dy = f ' (x1) dx

slope = f ' (x1)

http://en.wikipedia.org/wiki/Derivative

dx1 dx2 dx3

dy1 dy2 dy3

=
dy1

dx1

=
dy2

dx2

=
dy3

dx3
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Differentials and Derivatives (2)

for small enough dx

f (x1 + dx ) ≈ f (x1) + dy

= f (x1) + f ' (x1)dx

f (x1 + dx ) = f (x1) + dy

= f (x1) + f ' (x1)dx

lim
dx→0

f (x1 + dx ) − f (x1)

dx
= f ' (x1)

lim
dx→0

x1

f (x1)

dx

dy
dy = f ' (x1) dx

slope = f ' (x1)

http://en.wikipedia.org/wiki/Derivative

dx1 dx2 dx3

dy1 dy2 dy3

=
dy1

dx1

=
dy2

dx2

=
dy3

dx3
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dy = f ' (x) dx

dy =
df
dx

dx

Differentials and Derivatives (3) 

dy = ḟ dx

dy = Dx f dx

∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

∫ dy =∫ 1dy = y

y = f (x)
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Integration Constant C 

∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

y + C1 = f (x) + C2

y = f (x) + C

place a 
constant

place another 
constant 

∫ dy = ∫ df
dx

dx + C

differs by a constant

∫ dy = ∫ f ' (x) dx + C

y = f (x) + C

place only one constant 
from the beginning
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The differential of a function ƒ(x) 
of a single real variable x is the 
function of two independent real 
variables x and dx given by

(x , dx ) dy

Differential as a function

x1

f  x1

Line equation in the new coordinate.

dx

dy
dy = f '  x1 dx

slope = f '  x1

http://en.wikipedia.org/wiki/Derivative

dy = f ' (x) dx
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Applications of Differentials (1)

∫ f ( g(x ) )⋅g ' (x) dx ∫ f ( u ) du=

Substitution Rule

u = g( x) du = g ' (x )dx

∫ f (g)
dg
dx

dx ∫ f ( g ) dg=

du =
dg
dx

dx(I) 

(II) 
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Applications of Differentials (2)

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

Integration by parts

u = f (x)

v = g(x )

du = f ' (x ) dx

dv = g ' ( x)dx

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

∫udv u v − ∫ v du=

du =
df
dx

dx

dv =
dg
dx

dx



Derivatives (1A) 20 Young Won Lim
1/28/16

Derivatives and Differentials (large dx)

dx = 0.6;

f (x ) = sin(x )

tangent at x1

m = f ' (x1) f (x1) + f ' ( x1)dx

f ' (x1)dx

f (x1) = sin(x1)

dx

f (x2) + f ' (x2)dx

x1 x2
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Euler Method of Approximation (large dx)

dx = 0.6;

f (x ) = sin(x )

tangent at x1

m = f ' (x1) f (x2) ≈ f (x1) + f ' (x1)dx

f (x1) = sin(x1)

dx

f (x3) ≈ f (x2) + f ' (x2)dx
≈ (f (x2) + f ' (x2)dx ) + f ' (x2)dx

x1 x2 x3

Euler Method

Initial Value
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Derivatives and Differentials (large dx = 0.6)

dx = 0.6;

dy = f ' (x) dx

dy =
df
dx

dx ∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

y = f (x)
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Derivatives and Differentials (small dx = 0.2)

dx = 0.2;

dy = f ' (x) dx

dy =
df
dx

dx ∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

y = f (x)
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Euler's Method of Approximation
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Octave Code

clf; hold off;
dx = 0.2;

x = 0 : dx : 8;
y = sin(x);
plot(x, y);
t = sin(x) + cos(x)*dx ;
y1 = [y(1), t(1:length(y)-1)];

y2 = [0];
y2(1) = y(1);
for i=1:length(y)-1
  y2(i+1) = y2(i) + cos((i)*dx)*dx;
endfor

hold on
t = 0:0.01:8;
plot(t, sin(t), "color", "blue");
plot(x, y,   "color", 'blue',  "marker", 'o');
plot(x, y1,  "color", 'red',   "marker", '+');
plot(x, y2,  "color", 'green',  "marker", '*');



Derivatives (1A) 26 Young Won Lim
1/28/16

Prerequisite to First Order ODEs
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Partial Derivatives

Function of one variable y = f (x)

d y
dx

= lim
Δ x→0

f (x+Δ x )− f (x)

Δ x

Function of two variable

∂ z
∂ x

= lim
Δ x→0

f (x+Δ x , y)− f (x , y)

Δ x

z = f (x , y )

∂ z
∂ y

= lim
Δ y→0

f (x , y+Δ y )− f (x , y )

Δ y

treating      as a constant

treating     as a constant

y

x
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Partial Derivatives Notations

Function of one variable y = f (x)

d y
dx

= lim
Δ x→0

f (x+Δ x )− f (x)

Δ x

Function of two variables

∂ z
∂ x

= lim
Δ x→0

f (x+Δ x , y)− f (x , y)

Δ x

z = f (x , y )

∂ z
∂ y

= lim
Δ y→0

f (x , y+Δ y )− f (x , y )

Δ y

treating      as a constant

treating     as a constant

y

x

∂ z
∂ x

=
∂ f
∂ x

= zx = f x

∂ z
∂ y

=
∂ f
∂ y

= zy = f y
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Higher-Order & Mixed Partial Derivatives

Second-order Partial Derivatives

∂
2 z

∂ x2 = ∂
∂x (∂ z∂ x ) ∂

2 z
∂ y2 = ∂

∂ y ( ∂ z∂ y )
Third-order Partial Derivatives

∂
3 z

∂ x3
= ∂

∂x (∂
2z

∂ x2 )
∂3 z

∂ y3
= ∂

∂ y ( ∂
2z

∂ y2 )
Mixed Partial Derivatives

∂
2z

∂ x∂ y
= ∂

∂ x ( ∂ z∂ y ) ∂
2z

∂ y ∂ x
= ∂

∂ y (∂ z∂x )=
?

∂
2 z

∂ x∂ y
=

∂
2z

∂ y∂ x
∂ z
∂ x

,
∂ z
∂ y

,
∂
2z

∂ x∂ y
,

∂
2 z

∂ y∂ x
all defined and 
continuous
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Partial Derivative Examples (1)

http://en.wikipedia.org/wiki/Partial_derivative

(1,1,3) ∂
∂x

z (1,1) = 3

z (x , 1) = x2 + x + 1

z(x,y) when y=1

tangent at x=1 of the function z(x,1)
z = x2

+ x y + y2

∂ z
∂ y

= x + 2 y

∂ z
∂ x

= 2x + y

z = x2
+ x y + y2
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Partial Derivative Examples (2)

http://en.wikipedia.org/wiki/Partial_derivative

z (−1, y )

z (x ,1)

(1,1,3)

z = x2
+ x y + y2

∂ z
∂ y

= x + 2 y

∂ z
∂ x

= 2x + y

z = x2
+ x y + y2

z(x,y) when y=1

z(x,y) when x=-1

y

x
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Partial Derivative Examples (3)

∂ z
∂ y

= −1 + 2 y

z(x,y) when x=-1

y

z(x,y) when y=1

x

y

x

2x + 1

z (−1, y )z (x ,1)

x + 2y
∂ z
∂ x

= 2x + y
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Total Differential

http://de.wikipedia.org/wiki/Totales_Differential
Muhammet Cakir

http://de.wikipedia.org/wiki/Totales_Differential


Derivatives (1A) 34 Young Won Lim
1/28/16

Total Differential

dy

dy

∂z
∂y

⋅dy

dx

dx

∂z
∂x

⋅dx

dx

∂ z
∂y

⋅dy

∂ z
∂x

⋅dx

dz

dz =
∂ z
∂ x

⋅dx +
∂ z
∂ y

⋅dy

z = f (x, y)

dxdy

(x0, y0, f )

(x0+dx , y0+dy , f )

differential, or
total differential

(x0, y0, 0)

(x0, y0, f )
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