Derivatives (1A)

Copyright (c) 2011-2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Differentials

A triangle and its slope

$$
\begin{aligned}
& y=f(x) \\
& \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
\end{aligned}
$$

$$
\left(x_{1,} f\left(x_{1}\right)\right)
$$

Many smaller triangles and their slopes

$$
\begin{aligned}
& \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h} \\
& \frac{f\left(x_{1}+h_{1}\right)-f\left(x_{1}\right)}{h_{1}} \\
& \frac{f\left(x_{1}+h_{2}\right)-f\left(x_{1}\right)}{h_{2}}
\end{aligned}
$$

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
$$

$$
\left(x_{1,} f\left(x_{1}\right)\right)
$$

$$
\bullet\left(x_{1}+h, f\left(x_{1}+h\right)\right)
$$

The limit of triangles and their slopes

$$
y=f(x)
$$

The derivative of the function f at x_{1}

$$
f^{\prime}\left(x_{1}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
$$

The derivative function of the function f

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
y^{\prime}=f^{\prime}(x)=\frac{d f}{d x}=\frac{d}{d x} f(x)
$$

5. (calculus) The derived function of a function.

The derivative of $f: f(x)=x^{2}$ is $f^{\prime}: f^{\prime}(x)=2 x$
6. (calculus) The value of this function for a given value of its independent variable.

The derivative of $f(x)=x^{2}$ at $x=3$ is $f^{\prime}(3)=2 * 3=6$.

The derivative as a function

$$
y=f(x)
$$

Derivative Function

$$
\begin{aligned}
y^{\prime} & =f^{\prime}(x) \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

The notations of derivative functions

Largrange's Notation

$$
y^{\prime}=f^{\prime}(x)
$$

Leibniz's Notation

$$
\frac{d y}{d x}=\frac{d}{d x} f(x)
$$

Newton's Notation

$$
\dot{y}=\dot{f}(x)
$$

not a ratio.
slope of a
tangent line

Euler's Notation

$$
D_{x} y=D_{x} f(x)
$$

$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
f^{\prime}(x)
$$

- derivative with respect to x
- x is an independent variable

Another kind of triangles and their slope

Differential in calculus

Differential: $d x, d y, \ldots$

$$
f\left(x_{1}+d x\right)
$$

Approximation

Differential: $d x, d y, \ldots$

$$
\begin{aligned}
f\left(x_{1}+d x\right) & \approx f\left(x_{1}\right)+d y \\
& =f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right) d x
\end{aligned}
$$

$$
f^{\prime}\left(x_{1}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
$$

function
the linearization of a function
tangent line

$$
f\left(x_{1}+d x\right)
$$

Differential as a function

Line equation in the new coordinate.

Differentials and Derivatives (1)

$$
\begin{aligned}
& d y=f^{\prime}(x) d x \\
& d y=\frac{d f}{d x} d x
\end{aligned}
$$

differentials derivative

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

Differentials and Derivatives (2)

$$
\begin{aligned}
f\left(x_{1}+d x\right) & \approx f\left(x_{1}\right)+d y \\
& =f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right) d x
\end{aligned} \quad \begin{aligned}
\lim _{d x \rightarrow 0}
\end{aligned} \quad \begin{aligned}
f\left(x_{1}+d x\right) & =f\left(x_{1}\right)+d y \\
& =f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right) d x
\end{aligned}
$$

$$
\lim _{d x \rightarrow 0} \frac{f\left(x_{1}+d x\right)-f\left(x_{1}\right)}{d x}=f^{\prime}\left(x_{1}\right)
$$

Differentials and Derivatives (3)

$$
\begin{array}{rlrl}
d y & =f^{\prime}(x) d x & \int d y & =\int f^{\prime}(x) d x \\
d y & =\frac{d f}{d x} d x & \int d y & =\int \frac{d f}{d x} d x \\
d y & =\dot{f} d x & & \\
d y=D_{x} f d x & \int d y=\int 1 d y=y
\end{array}
$$

Integration Constant C

$$
\begin{array}{ll}
\text { place a } & \text { place another } \\
\text { constant } & \text { constant }
\end{array}
$$

differs by a constant

place only one constant from the beginning
$\int d y=\int f^{\prime}(x) d x+C$

$$
\int d y=\int \frac{d f}{d x} d x+C
$$

$$
y=f(x)+C
$$

Differential as a function

The differential of a function $f(x)$ of a single real variable \boldsymbol{x} is the function of two independent real variables \boldsymbol{x} and $\mathbf{d x}$ given by

$$
d y=f^{\prime}(x) d x
$$

Line equation in the new coordinate.

Applications of Differentials (1)

Substitution Rule

$$
\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u
$$

(I) $u=g(x) \quad d u=g^{\prime}(x) d x \quad d u=\frac{d g}{d x} d x$
(II) $\int f(g) \frac{d g}{d x} d x=\int f(g) d g$

Applications of Differentials (2)

Integration by parts

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

$$
\begin{array}{lll}
u=f(x) & d u=\underline{f^{\prime}(x) d x} & d u=\frac{d f}{d x} d x \\
v=g(x) & d v=\underline{g^{\prime}(x) d x} & d v=\frac{d g}{d x} d x
\end{array}
$$

$$
\int f(x) \underline{g^{\prime}(x) d x}=f(x) g(x)-\int \underline{f^{\prime}(x)} g(x) \underline{d x}
$$

$$
\int u d v=u v-\int v d u
$$

Derivatives and Differentials (large $d x$)

Euler Method of Approximation (large $d x$)

Derivatives and Differentials (large $d x=0.6$)

Derivatives and Differentials (small $d x=0.2$)

Euler's Method of Approximation

Octave Code

```
clf; hold off;
dx = 0.2;
\(\mathrm{x}=0: \mathrm{dx}: 8\);
\(y=\sin (x)\);
\(\operatorname{plot}(x, y)\);
\(\mathrm{t}=\sin (\mathrm{x})+\cos (\mathrm{x})^{\star} \mathrm{dx}\);
y1 = [y(1), t(1:length(y)-1)];
y2 = [0];
\(\mathrm{y} 2(1)=\mathrm{y}(1)\);
for \(\mathrm{i}=1\) :length( y\()\)-1
    \(y 2(i+1)=y 2(i)+\cos \left((i)^{\star} d x\right)^{\star} d x ;\)
endfor
```

hold on
$\mathrm{t}=0: 0.01: 8 ;$
plot(t, sin(t), "color", "blue");
plot(x, y, "color", 'blue', "marker", 'o');
plot(x, y1, "color", 'red', "marker", '+');
plot(x, y2, "color", 'green', "marker", '*');

Prerequisite to First Order ODEs

Partial Derivatives

Function of one variable $\quad y=f(x)$

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Function of two variable

$$
z=f(x, y)
$$

$$
\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

treating y as a constant

$$
\frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

treating x as a constant

Partial Derivatives Notations

Function of one variable $\quad y=f(x)$

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Function of two variables $z=f(x, y)$

$$
\frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}=z_{x}=f_{x} \quad \frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

treating y as a constant

$$
\frac{\partial z}{\partial y}=\frac{\partial f}{\partial y}=z_{y}=f_{y} \quad \frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

treating x as a constant

Higher-Order \& Mixed Partial Derivatives

Second-order Partial Derivatives

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \quad \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)
$$

Third-order Partial Derivatives

$$
\frac{\partial^{3} z}{\partial x^{3}}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} z}{\partial x^{2}}\right) \quad \frac{\partial^{3} z}{\partial y^{3}}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)
$$

Mixed Partial Derivatives

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) & \stackrel{?}{=} \quad \frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right) \\
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x} \quad & \Leftrightarrow
\end{aligned} \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y \partial x} \quad \begin{aligned}
& \text { all defined and } \\
& \text { continuous }
\end{aligned}
$$

Partial Derivative Examples (1)

$$
\begin{aligned}
& z=x^{2}+x y+y^{2} \Rightarrow \frac{\partial z}{\partial x}=2 x+y \\
& z=x^{2}+x y+y^{2} \Rightarrow \frac{\partial z}{\partial y}=x+2 y
\end{aligned}
$$

tangent at $x=1$ of the function $z(x, 1)$

Partial Derivative Examples (2)

$$
z(x, y) \text { when } x=-1
$$

$$
\begin{aligned}
& z=x^{2}+x y+y^{2} \Rightarrow \frac{\partial z}{\partial x}=2 x+y \\
& z=x^{2}+x y+y^{2} \Rightarrow \frac{\partial z}{\partial y}=x+2 y
\end{aligned}
$$

http://en.wikipedia.org/wiki/Partial_derivative

Partial Derivative Examples (3)

$z(x, y)$ when $y=1$

$\frac{\partial z}{\partial x}=2 x+y \quad 2 x+1$

$$
z(x, y) \text { when } x=-1
$$

-144
$\frac{\partial z}{\partial y}=-1+2 y$
$x+2 y$

Total Differential

Total Differential

$$
\begin{aligned}
& z=f(x, y) \\
& d z=\frac{\partial z}{\partial x} \cdot d x+\frac{\partial z}{\partial y} \cdot d y
\end{aligned}
$$

References

[1] http://en.wikipedia.org/
[2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[3] E. Kreyszig, "Advanced Engineering Mathematics"
[4] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"

