Finite State Machine (1A)

Copyright (c) 2013-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

FSM and Digital Logic Circuits

- Latch
- D FlipFlop
- Registers
- Timing
- Mealy machine
- Moore machine
- Traffic Lights Examples

NOR-based SR Latch - SET / RESET

RESET \begin{tabular}{l}
$\mathrm{S}=0$

$\mathrm{R}=\underline{1}$

\quad

$\mathrm{Q}=0$

$\mathrm{Q}=1$
\end{tabular}

NOR-based SR Latch - HOLD

$$
\begin{array}{|l|l}
\hline \text { HOLD } & \begin{array}{l}
\mathrm{S}=0 \\
\mathrm{R}=0
\end{array} \\
\hline \mathrm{Q}=\text { old } \overline{\mathrm{Q}}
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \text { HOLD } & \begin{array}{l}
\mathrm{S}=0 \\
\mathrm{R}=0
\end{array} \\
\mathrm{Q}=\text { old } \mathrm{Q} \\
\overline{\mathrm{Q}}=\text { old } \overline{\mathrm{Q}}
\end{array}
$$

NOR-based SR Latch

NOR-based SR Latch States

SR Latch States

NOR-based D Latch - SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

$\mathrm{D}=1$
$\mathrm{C}=1$

SET	$\mathrm{S}=\underline{\mathbf{1}}$ $\mathrm{R}=0$

$\mathrm{Q}=1$
$\mathrm{Q}=0$

RESET | $\mathrm{S}=0$ |
| :--- |
| $\mathrm{R}=\mathbf{1}$ |

$\mathrm{Q}=0$
$\mathrm{Q}=1$

NOR-based D Latch - HOLD

$\mathrm{D}=\underline{\mathrm{X}}$
$\mathrm{C}=0$

HOLD | $\mathrm{S}=0$ |
| :--- |
| $\mathrm{R}=0$ |

> | $\mathrm{Q}=$ old Q |
| :--- |
| $\overline{\mathrm{Q}}=$ old $\overline{\mathrm{Q}}$ |

NOR-based D Latch - Set / Reset / Hold

NOR-based D Latch - transparent / opaque

NOR-based D Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D Latch States

Master-Slave FlipFlops

Master-Slave D FlipFlop

the hold output this value is of the master is held for another transparently half period reaches the output of the slave

Master-Slave D FlipFlop - Falling Edge

Master D Latch

Slave D Latch

D Latch \& D FlipFlop

Level Sensitive D Latch

$$
\begin{array}{ll}
\text { CK=1 } & \text { transparent } \\
\text { CK=0 } & \text { opaque }
\end{array}
$$

Edge Sensitive D FlipFlop

CK=1 $\rightarrow 0$ transparent else opaque

D FlipFlop with Enable (1)

EN=1 Regular D Flip Flop
Sampling D input @ posedge of CK

EN=0 Holding D Flip Flop Sampling Q output @ posedge of CK

D FlipFlop with Enable (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Registers

FF Timing (Ideal)

States

Sequence of States

Find inputs to FFs
which will make outputs in this sequence

How to change current state

Finding FF Inputs

Method of Finding FF Inputs

Find the boolean functions D3, D2, D1, D0 in terms of Q3, Q2, Q1, Q0, and external inputs for all possible cases.

$Q(t) \quad Q(t+1)$

Inputs

State Transition

Moore FSM

Mealy FSM

Traffic Lights Example

FSM Inputs and Outputs

States

State and State Transition Diagrams

Next State Functions $\mathrm{S}_{1}{ }^{\prime}$ and $\mathrm{S}_{2}{ }^{\prime}$

	$\mathrm{S}_{1} \mathrm{~S}_{0} \mathrm{~T}_{\mathrm{A}} \mathrm{T}_{\mathrm{B}}$	S^{\prime}	$S^{\prime}{ }_{0}=\overline{S_{1}} \overline{S_{0}} \overline{T_{A}}+S_{1} \overline{S_{0}} \overline{T_{B}}$
$\overline{S_{1}} \overline{S_{0}} \overline{T_{A}} \Rightarrow$	000 X	1	
	001 X	0	
	$01 \times \mathrm{x}$	0	
$S_{1} \overline{S_{0}} \overline{T_{B}} \Rightarrow$	10×0	1	
	10×1	0	
	$11 \times \mathrm{x}$	0	

Output Functions: $\mathrm{L}_{\mathrm{A} 1}, \mathrm{~L}_{\mathrm{A} 0}, \mathrm{~L}_{\mathrm{B} 0}, \mathrm{~L}_{\mathrm{B} 1}$

$S_{1} S_{2} L_{A L} L_{A 0} L_{B 1} L_{B 0}$								
0	0	0	0	1	0			
0	1	0	1	1	0		0	
1	0	1	0	0	0		0	
1	1	1	0	0	1			

$S_{1} S_{2} L_{A 1}$		
0	0	0
0	1	0
1	0	1
1	1	1
$L_{A 1}=S_{1}$		

	$S_{1} S_{2}$	$L_{A 0}$	
0	0	0	
0	1	1	
1	0	0	
1	1	0	
$L_{A 0}=\overline{S_{1}} S_{0}$			

- 00

\Rightarrow| | $S_{1} S_{2}$ | $L_{B 1}$ |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |
| | $L_{B 1}=\overline{S_{1}}$ | |

	$S_{1} S_{2}$ $L_{B 0}$ 0 0 0 1 1 0 1 1	0
$L_{A 0}=S_{1} S_{0}$		0

Moore FSM

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X

Moore FSM Implementation

$$
\begin{array}{lll}
\text { Inputs } & \mathrm{T}_{A} & \mathrm{~T}_{\mathrm{B}} \\
\text { Current State } & \mathrm{S}_{1} & \mathrm{~S}_{0}
\end{array}
$$

Next States

$$
\begin{aligned}
& S_{1}^{\prime}=S_{1} \oplus S_{0} \\
& S_{0}^{\prime}=\overline{S_{1}} \overline{S_{0}} \overline{T_{A}}+S_{1} \overline{S_{0}} \overline{T_{B}}
\end{aligned}
$$

Current State $S_{1} \quad S_{0}$

Outputs

$$
\begin{array}{ll}
L_{A 1}=S_{1} & L_{B 1}=\overline{S_{1}} \\
L_{A 0}=\overline{S_{1}} S_{0} & L_{B 0}=S_{1} S_{0}
\end{array}
$$

State Diagram

Acceptors and Recognizers

Fig. 5: Representation of a finite-state machine; this example shows one that determines whether a binary number has an even number of 0s, where S_{1} is an accepting state.

Acceptor FSM: parsing the string "nice"

Classifiers and Transducers

A classifier is a generalization of a finite state machine that, similar to an acceptor, produces a single output on termination but has more than two terminal states

Transducers generate output based on a given input and/or a state using actions.
They are used for control applications and in the field of computational linguistics.

General Transducers

Transducers are used in electronic communications systems to convert signals of various physical forms to electronic signals, and vice versa. In this example, the first transducer could be a microphone, and the second transducer could be a speaker.

Transducers : Moore and Mealy Machines

Fig. 6 Transducer FSM: Moore model example

Fig. 7 Transducer FSM: Mealy model example

There are two input actions (i:): "start motor to close the door if command_close arrives" and "start motor in the other direction to open the door if command_open arrives".

Moore machine

Example: DFA, NFA, GNFA, or Moore machine [edit]

S_{1} and S_{2} are states and S_{1} is an accepting state or a final state.
Each edge is labeled with the input. This example shows an acceptor for strings over $\{0,1\}$ that contain an even number of zeros.

An example of a deterministic finite \quad automaton that accepts only binary numbers that are multiples of 3 . The state S_{0} is both the start state and an accept state.

Mealy machine

Example: Mealy machine [edit]

S_{0}, S_{1}, and S_{2} are states. Each edge is labeled with " j / k " where j is the input and k is the output.

State Transition Table

State Diagram

Mathematical Models for acceptors

A deterministic finite state machine or acceptor deterministic finite state machine is a quintuple ($\left.\Sigma, S, s_{0}, \delta, F\right)$, where:

- Σ is the input alphabet (a finite, non-empty set of symbols).
- S is a finite, non-empty set of states.
- s_{0} is an initial state, an element of S.
- δ is the state-transition function: $\delta: S \times \Sigma \rightarrow S$
- F is the set of final states, a (possibly empty) subset of S.

Deterministic Finite Automaton Example (1)

The following example is of a DFA M , with a binary alphabet, which requires that the input contains an even number of 0 s.

```
\(\mathrm{M}=(\mathrm{Q}, \Sigma, \delta, q 0, F)\) where
    \(\mathrm{Q}=\{\mathrm{S} 1, \mathrm{~S} 2\}\),
    \(\Sigma=\{0,1\}\),
    q0 = S1,
    \(F=\{S 1\}\), and
    \(\delta\) is defined by the following state transition table:
```


	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{S}_{\mathbf{1}}$	S_{2}	S_{1}
$\boldsymbol{S}_{\mathbf{2}}$	S_{1}	S_{2}

Deterministic Finite Automaton Example (2)

The state S1 represents that there has been an even number of $0 s$ in the input so far, while S2 signifies an odd number.

A 1 in the input does not change the state of the automaton.
When the input ends, the state will show whether the input contained an even number of 0 s or not. If the input did contain an even number of $0 \mathrm{~s}, \mathrm{M}$ will finish in state S1, an accepting state, so the input string will be accepted.

The language recognized by M is the regular language given by the regular expression ((1*) 0 (1*) $\left.0\left(\mathbf{1}^{*}\right)\right)^{*}$, where "*" is the Kleene star, e.g., 1* denotes any number (possibly zero) of consecutive ones.

Mathematical Model for transducers (1)

A finite-state transducer is a sextuple ($\Sigma, \Gamma, \mathrm{S}, \mathrm{s} 0, \delta, \omega$), where:
Σ is the input alphabet (a finite non-empty set of symbols).
Γ is the output alphabet (a finite, non-empty set of symbols).
S is a finite, non-empty set of states.
$s 0$ is the initial state, an element of S.
ω is the output function.

Mathematical Model for transducers (2)

If the output function is a function of a state and input alphabet $(\omega: S \times \Sigma \rightarrow \Gamma)$ that definition corresponds to the Mealy model, and can be modelled as a Mealy machine.

If the output function depends only on a state ($\omega: S \rightarrow \Gamma$) that definition corresponds to the Moore model, and can be modelled as a Moore machine.

A finite-state machine with no output function at all is known as a semiautomaton or transition system.

References

[1] http://en.wikipedia.org/
[2]

