Finite State Machine (1A)

Copyright (c) 2013 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

FSM and Digital Logic Circuits

- Latch
- D FlipFlop
- Registers
- Timing
- Mealy machine
- Moore machine
- Traffic Lights Examples

NOR-based SR Latch – SET / RESET

4

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based SR Latch – HOLD

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

NOR-based SR Latch States

SR Latch States

NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based D Latch – HOLD

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based D Latch – Set / Reset / Hold

FSM (1A)

11

NOR-based D Latch – transparent / opaque

NOR-based D Latch States

D Latch States

Master-Slave FlipFlops

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Master-Slave D FlipFlop

this value is held for another half period

Master-Slave D FlipFlop – Falling Edge

D Latch & D FlipFlop

Level Sensitive D Latch

CK=1 transparent CK=0 opaque

Edge Sensitive D FlipFlop

 $CK=1 \rightarrow 0$ transparent else opaque

D FlipFlop with Enable (1)

EN=1 Regular D Flip Flop Sampling **D** input @ **posedge** of **CK**

EN=0 Holding D Flip Flop Sampling **Q** output @ **posedge** of CK

D FlipFlop with Enable (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Registers

FF Timing (Ideal)

Find inputs to FFs

which will make outputs in this sequence

How to change current state

Finding FF Inputs

During the tth clock edge period,

Compute the next state Q(t+1) using the current state Q(t) and other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th, the computed next state Q(t+1) becomes the current state

Method of Finding FF Inputs

Find the boolean functions D3, D2, D1, D0 in terms of Q3, Q2, Q1, Q0, and external inputs for all possible cases.

State Transition

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Compute the next state using the current state in the current clock cycle

> After the next clock edge, the computed next state (FF Inputs) becomes the current state (FF Outputs)

Moore FSM

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Mealy FSM

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Traffic Lights Example

FSM Inputs and Outputs

States

State and State Transition Diagrams

FSM (1A)

Next State Functions S₁' and S₂'

$S_1 S_0 T_A T_B S_1 S_0$	$S_1 S_0 T_A T_B S_1$	
0 0 0 X 0 1	0 0 0 X 0	
0 0 1 X 0 0	0 0 1 X 0	
0 1 X X 1 0	$\overline{S_1}S_0$ \Rightarrow 0 1 X X 1	$S'_1 = \overline{S}_1 S_0 + S_1 \overline{S}_0$
1 0 X 0 1 1	$S_1 \overline{S_0} \overline{T_B} \implies 1 \ 0 \ \times \ 0 \ 1$	$= S_1 \oplus S_0$
1 0 X 1 1 0	$S_1 \overline{S_0} T_B \implies 1 \ 0 \ \times 1 \ 1$	
1 1 X X 0 0	1 1 X X 0	
	$S_{1}S_{0}T_{A}T_{B}S'_{0}$ $\overline{S_{1}}\overline{S_{0}}\overline{T_{A}} \Longrightarrow \begin{array}{c} 0 & 0 & 0 & X \\ 0 & 0 & 1 & X \\ 0 & 1 & X & 0 \\ \overline{S_{1}}\overline{S_{0}}\overline{T_{B}} \Longrightarrow \begin{array}{c} 1 & 0 & X & 0 \\ 1 & 0 & X & 0 \\ \end{array}$	$S'_0 = \overline{S_1}\overline{S_0}\overline{T_A} + S_1\overline{S_0}\overline{T_B}$
itv.ora/wiki/The necessities in Computer Desian	1 0 X 1 0 1 1 X X 0	

https://en.wikiversity.org/wiki/The_necessities_ii

FSM ([1A)
-------	------

Output Functions : L_{A1} , L_{A0} , L_{B0} , L_{B1}

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM Implementation

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

State Diagram

https://en.wikipedia.org/wiki/Finite-state_machine

Acceptors and Recognizers

Fig. 5: Representation of a finite-state machine; this example shows one that determines whether a binary number has an even number of 0s, where S_1 is an **accepting state**.

Acceptor FSM: parsing the string "nice"

https://en.wikipedia.org/wiki/Finite-state_machine

Classifiers and Transducers

A **classifier** is a generalization of a finite state machine that, similar to an acceptor, produces a <u>single output</u> on <u>termination</u> but has <u>more than two</u> **terminal states**

Transducers generate **output** based on a given **input** and/or a **state** using actions. They are used for <u>control</u> <u>applications</u> and in the field of computational linguistics.

https://en.wikipedia.org/wiki/Finite-state_machine

General Transducers

Transducers are used in electronic communications systems to convert signals of various physical forms to electronic signals, and vice versa. In this example, the first transducer could be a **microphone**, and the second transducer could be a **speaker**.

https://en.wikipedia.org/wiki/Transducer

Transducers : Moore and Mealy Machines

Fig. 6 Transducer FSM: Moore model example

Fig. 7 Transducer FSM: Mealy model example

There are two **input actions** (I:): "start motor to close the door if command_close arrives" and "start motor in the other direction to open the door if command_open arrives".

https://en.wikipedia.org/wiki/Finite-state_machine

Moore machine

Example: DFA, NFA, GNFA, or Moore machine [edit]

 S_1 and S_2 are states and S_1 is an **accepting state** or a **final state**. Each edge is labeled with the input. This example shows an acceptor for strings over $\{0,1\}$ that contain an even number of zeros.

state S_0 is both the start state and an

accept state.

https://en.wikipedia.org/wiki/State_diagram https://en.wikipedia.org/wiki/Finite-state transducer

Young Won Lim 6/6/18

Mealy machine

Example: Mealy machine [edit]

 S_0 , S_1 , and S_2 are states. Each edge is labeled with "*j* / *k*" where *j* is the input and *k* is the output.

https://en.wikipedia.org/wiki/State_diagram https://en.wikipedia.org/wiki/Mealy_machine

State Transition Table

https://en.wikipedia.org/wiki/State_transition_table

Mathematical Models for acceptors

A deterministic finite state machine or **acceptor** deterministic finite state machine is a quintuple (Σ , S, s₀, δ , F), where:

- Σ is the <u>input</u> alphabet (a finite, non-empty set of symbols).
- S is a finite, non-empty set of <u>states</u>.
- s_0 is an <u>initial</u> state, an element of S.
- δ is the <u>state-transition</u> function: $\delta : S \times \Sigma \rightarrow S$
- F is the set of final states, a (possibly empty) subset of S.

Deterministic Finite Automaton Example (1)

The following example is of a DFA M, with a binary alphabet, which requires that the input contains an even number of 0s.

$$\label{eq:main_state} \begin{array}{l} \mathsf{M} = (\mathsf{Q}, \, \mathsf{\Sigma}, \, \delta, \, \mathsf{q0}, \, \mathsf{F}) \text{ where} \\ \mathsf{Q} = \{\mathsf{S1}, \, \mathsf{S2}\}, \\ \mathsf{\Sigma} = \{\mathsf{0}, \, \mathsf{1}\}, \\ \mathsf{q0} = \mathsf{S1}, \\ \mathsf{F} = \{\mathsf{S1}\}, \, \mathsf{and} \\ \delta \text{ is defined by the following state transition table:} \end{array}$$

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The **state S1** represents that there has been an <u>even</u> number of 0s in the input so far, while **S2** signifies an <u>odd</u> number.

A **1** in the input does not change the state of the automaton.

When the <u>input ends</u>, the state will show whether the input contained an <u>even</u> number of **0**s or not. If the input did contain an <u>even</u> number of **0**s, M will finish in **state S1**, an accepting state, so the input string will be accepted.

The language recognized by M is the regular language given by the regular expression ((1*) 0 (1*) 0 (1*))*, where "*" is the Kleene star, e.g., 1* denotes any number (possibly zero) of consecutive **ones**.

A finite-state transducer is a sextuple (Σ , Γ , S, s0, δ , ω), where: Σ is the input alphabet (a finite non-empty set of symbols). Γ is the output alphabet (a finite, non-empty set of symbols). S is a finite, non-empty set of states. S0 is the initial state, an element of S. ω is the output function.

If the **output** function is a function of a **state** and **input** alphabet $(\omega : S \times \Sigma \rightarrow \Gamma)$ that definition corresponds to the **Mealy model**, and can be modelled as a Mealy **machine**.

If the **output** function depends only on a **state** (ω : S \rightarrow Γ) that definition corresponds to the **Moore model**, and can be modelled as a **Moore machine**.

A finite-state machine with no output function at all is known as a **semiautomaton** or **transition** system.

References

