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FSM and Digital Logic Circuits

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

 Latch
 D FlipFlop
 Registers
 Timing
 Mealy machine
 Moore machine
 Traffic Lights Examples



FSM (1A) 4 Young Won Lim
6/6/18

NOR-based SR Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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NOR-based SR Latch – HOLD 
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https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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NOR-based SR Latch
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NOR-based SR Latch States
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0 1

SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SET SETHOLD, HOLD,

RESET

RESET S=1

R=0

SET

S=0

R=1

RESET

S=0

R=0

HOLD Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1



FSM (1A) 9 Young Won Lim
6/6/18

NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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NOR-based D Latch – HOLD 

C

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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NOR-based D Latch – Set / Reset / Hold 
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NOR-based D Latch – transparent / opaque  
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NOR-based D Latch States

Q=1

Q=0

Q=0

Q=1

C=1

D=1

C=1

D=0

C=0

D=X

C=1

D=0

C=0

D=X

C=1

D=1

C

D

C Q

Q

SETRESETHOLD NOR based D Latch

Q

Q

SETRESETHOLD

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design



FSM (1A) 14 Young Won Lim
6/6/18

D Latch States
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Master-Slave FlipFlops

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Master-Slave D FlipFlop
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Master-Slave D FlipFlop – Falling Edge
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D Latch & D FlipFlop
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D FlipFlop with Enable (1)
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D FlipFlop with Enable (2)
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Registers

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FF Timing (Ideal)
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States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th 
edge

(t+2)th 
edge

(t+3)th 
edge

(t+4)th 
edge

(t+5)th 
edge

(t)th 
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State 



FSM (1A) 24 Young Won Lim
6/6/18

Sequence of States
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How to change current state
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Finding FF Inputs
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Method of Finding FF Inputs
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State Transition
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Moore FSM

1

clock

State
Register

Next State
Combinational

Logic

Output 
Combinational

Logic
D  Q D  Q D  Q 

D  Q D  Q D  Q 

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current 
State 

Next 
State 

FSM
Outputs

FSM
Inputs



FSM (1A) 30 Young Won Lim
6/6/18

Mealy FSM
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Traffic Lights Example

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FSM Inputs and Outputs
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States 

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

T
B

T
A

=0

=0

T
A =1

T
B =1

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design



FSM (1A) 34 Young Won Lim
6/6/18

00
RG

01
RY

11
YR

10
GR

T
A
=1

T
A
=0

T
B
=1

T
B
=0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

State and State Transition Diagrams

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

0

R

G

G

G

G

Y

R



FSM (1A) 35 Young Won Lim
6/6/18

Next State Functions S1’ and S2’
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Output Functions : LA1, LA0, LB0, LB1
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Moore FSM 
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Moore FSM Implementation
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State Diagram 

https://en.wikipedia.org/wiki/Finite-state_machine
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Acceptors and Recognizers

https://en.wikipedia.org/wiki/Finite-state_machine

Acceptor FSM: parsing the string "nice"
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Classifiers and Transducers

https://en.wikipedia.org/wiki/Finite-state_machine

A classifier is a generalization of 
a finite state machine that, 
similar to an acceptor, 
produces a single output on termination 
but has more than two terminal states

Transducers generate output based on a 
given input and/or a state using actions. 
They are used for control applications and in 
the field of computational linguistics.
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General Transducers

https://en.wikipedia.org/wiki/Transducer

Transducers are used in electronic communications 
systems to convert signals of various physical forms to 
electronic signals, and vice versa. In this example, the 
first transducer could be a microphone, and the second 
transducer could be a speaker.
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Transducers : Moore and Mealy Machines

https://en.wikipedia.org/wiki/Finite-state_machine

Fig. 6 Transducer FSM: Moore 
model example

Fig. 7 Transducer FSM: Mealy 
model example

There are two input actions (I:): 
"start motor to close the door if 
command_close arrives" and 
"start motor in the other 
direction to open the door if 
command_open arrives".
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Moore machine

https://en.wikipedia.org/wiki/State_diagram

https://en.wikipedia.org/wiki/Finite-state_transducer
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Mealy machine

https://en.wikipedia.org/wiki/Mealy_machine

https://en.wikipedia.org/wiki/State_diagram
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State Transition Table 

https://en.wikipedia.org/wiki/State_transition_table
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Mathematical Models for acceptors

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A deterministic finite state machine or 
acceptor deterministic finite state machine is 
a quintuple (Σ, S, s

0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.
● s

0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S 
● F is the set of final states, a (possibly empty) subset of S.
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Deterministic Finite Automaton Example (1)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The following example is of a DFA M, with a binary alphabet, 
which requires that the input contains an even number of 0s.

M = (Q, Σ, δ, q0, F) where
    Q = {S1, S2},
    Σ = {0, 1},
    q0 = S1,
    F = {S1}, and
    δ is defined by the following state transition table:
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Deterministic Finite Automaton Example (2)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The state S1 represents that there has been an 
even number of 0s in the input so far, while S2 
signifies an odd number. 

A 1 in the input does not change the state of the 
automaton. 
When the input ends, the state will show whether 
the input contained an even number of 0s or not. 
If the input did contain an even number of 0s, M will 
finish in state S1, an accepting state, so the input 
string will be accepted.

The language recognized by M is the regular 
language given by the regular expression 
((1*) 0 (1*) 0 (1*))*, where "*" is the Kleene star, 
e.g., 1* denotes any number (possibly zero) of 
consecutive ones.
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Mathematical Model for transducers (1)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A finite-state transducer is a sextuple (Σ, Γ, S, s0, δ, ω), where:
Σ is the input alphabet (a finite non-empty set of symbols).
Γ is the output alphabet (a finite, non-empty set of symbols).
S is a finite, non-empty set of states.
s0 is the initial state, an element of S. 
ω is the output function.
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Mathematical Model for transducers (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

If the output function is a function of a state and input alphabet 
(ω : S × Σ → Γ) that definition corresponds to the Mealy model, 
and can be modelled as a Mealy machine. 

If the output function depends only on a state (ω : S → Γ) 
that definition corresponds to the Moore model, 
and can be modelled as a Moore machine. 

A finite-state machine with no output function at all is known as a 
semiautomaton or transition system.
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