
Young Won Lim
6/6/18

Finite State Machine (1A)

Young Won Lim
6/6/18

 Copyright (c) 2013 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

FSM (1A) 3 Young Won Lim
6/6/18

FSM and Digital Logic Circuits

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

 Latch
 D FlipFlop
 Registers
 Timing
 Mealy machine
 Moore machine
 Traffic Lights Examples

FSM (1A) 4 Young Won Lim
6/6/18

NOR-based SR Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=1

RESET Q=0

Q=1

S=1

R=0

SET Q=1

Q=0

1

0

0

1 1

0

0

1

FSM (1A) 5 Young Won Lim
6/6/18

NOR-based SR Latch – HOLD

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=0

HOLD Q=old Q

Q=old Q

0

0

0

1 0

0

0

1→0

→1 →0

→1

FSM (1A) 6 Young Won Lim
6/6/18

NOR-based SR Latch

R

S

Q

SET
begins

RST
begins

SET
begins

RST
begins

S=1
R=0

S=0
R=1

S=1
R=0

S=0
R=1

S=0
R=0

S=0
R=0

S=0
R=0

S=0
R=0

Hold
begins

Hold
begins

Hold
begins

Hold
begins

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 7 Young Won Lim
6/6/18

NOR-based SR Latch States

S=1

R=0

SET

Q=1

Q=0

S=0

R=1

RESETQ=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

S=1

R=0

S=0

R=1

S=0

R=0

S=0

R=1

S=0

R=0

S=1

R=0

Q=1

Q=0

Q=0

Q=1

S

R Q

Q

SETRESETHOLD NOR based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 8 Young Won Lim
6/6/18

0 1

SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SET SETHOLD, HOLD,

RESET

RESET S=1

R=0

SET

S=0

R=1

RESET

S=0

R=0

HOLD Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1

FSM (1A) 9 Young Won Lim
6/6/18

NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

C

1

1

1

1

0

0

1

1

0

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

1

0

0

1

S

R

S

R

D=1

C=1

D=0

C=1

0

FSM (1A) 10 Young Won Lim
6/6/18

NOR-based D Latch – HOLD

C

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

0

0

0

0

0

0

0

1

S

R

S

R
S=0

R=0

HOLD Q=old Q

Q=old Q

S=0

R=0

HOLD Q=old Q

Q=old Q

D=X

C=0

D=X

C=0

FSM (1A) 11 Young Won Lim
6/6/18

NOR-based D Latch – Set / Reset / Hold

C

D

Q

transparent opaque transparent opaque

SET
begins

RST
begins

SET
begins

RST
begins

Hold
begins

Hold
begins

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 12 Young Won Lim
6/6/18

NOR-based D Latch – transparent / opaque

C

D

Q

transparent opaque transparent opaque

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output

D→Q

FSM (1A) 13 Young Won Lim
6/6/18

NOR-based D Latch States

Q=1

Q=0

Q=0

Q=1

C=1

D=1

C=1

D=0

C=0

D=X

C=1

D=0

C=0

D=X

C=1

D=1

C

D

C Q

Q

SETRESETHOLD NOR based D Latch

Q

Q

SETRESETHOLD

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 14 Young Won Lim
6/6/18

D Latch States

0 1

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

C=1

D=1

Trans
1

C=1

D=0

Trans
0

C=0

D=X

Opaque Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1

Opaque, Opaque,

Transparent 0 Transparent 1

Transparent 0

Transparent 1

FSM (1A) 15 Young Won Lim
6/6/18

Master-Slave FlipFlops

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

C

Y

YD

C

Q

Q

FSM (1A) 16 Young Won Lim
6/6/18

Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output
of the master is
transparently
reaches the
output of the
slave

this value is
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 17 Young Won Lim
6/6/18

Master-Slave D FlipFlop – Falling Edge

Master D Latch

Slave D Latch

D

C Q

Q D

C Q

Q

D

Q

Q

D

CK

Q

Q

D

CK

Q

D

CK

Q

Y

Y

CK

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 18 Young Won Lim
6/6/18

D Latch & D FlipFlop

Level Sensitive D Latch

Edge Sensitive D FlipFlop

D

Q

Q

CK

D

CK

Q

D

Q

Q

C

D

Q

CK=1 transparent
CK=0 opaque

CK=1→0 transparent
else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 19 Young Won Lim
6/6/18

D FlipFlop with Enable (1)

D

Q

Q
0

1D

EN

Q

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

EN=1 Regular D Flip Flop
Sampling D input @ posedge of CK

EN=0 Holding D Flip Flop
Sampling Q output @ posedge of CK D

Q

Q
0

1D

EN

Q

Q

CK

1

0

FSM (1A) 20 Young Won Lim
6/6/18

D FlipFlop with Enable (2)

D

Q

Q

EN

D

Q

Q
0

1D

EN

Q

Q

CK

D

EN

Q

CK

D

EN

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 21 Young Won Lim
6/6/18

Registers

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

D Q

D Q

D Q

D Q

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

CLK

Register

In
pu

ts
 to

 F
F

s

O
ut

pu
ts

 o
f F

F
s

FSM (1A) 22 Young Won Lim
6/6/18

FF Timing (Ideal)

D
3:0

Q
3:0

Inputs to FFs

Outputs of FFs

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

FSM (1A) 23 Young Won Lim
6/6/18

States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th
edge

(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State

FSM (1A) 24 Young Won Lim
6/6/18

Sequence of States

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Find inputs to FFs

which will make outputs
in this sequence

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th
edge

(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State

FSM (1A) 25 Young Won Lim
6/6/18

How to change current state

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current
State

Next
State

comb

Current
State

Next
State

input

FSM (1A) 26 Young Won Lim
6/6/18

Finding FF Inputs

D Q

D Q

D Q

D Q

Comb
Next
State
Logic

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Inputs
to FSM

During the tth clock edge period,

Compute the next state Q(t+1)
using the current state Q(t) and
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th,
the computed next state Q(t+1)
becomes the current state

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM (1A) 27 Young Won Lim
6/6/18

Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Inputs

Find the boolean functions
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0,
and external inputs
for all possible cases.

Q(t)

Inputs
+

Q(t+1)

Current
State

Next
State

input

Q(t) Q(t+1)

FSM (1A) 28 Young Won Lim
6/6/18

State Transition

Q(t+1)

Q(t+1)Q(t)

D
3:0

Q
3:0

Inputs

Q(t+1)

Q(t)

Inputs

Compute the next state
using the current state
and external inputs
in the current clock cycle

After the next clock edge,
the computed next state (FF Inputs)
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current
State

Next
State

comb

FSM (1A) 29 Young Won Lim
6/6/18

Moore FSM

1

clock

State
Register

Next State
Combinational

Logic

Output
Combinational

Logic
D Q D Q D Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM
Outputs

FSM
Inputs

FSM (1A) 30 Young Won Lim
6/6/18

Mealy FSM

1

clock

State
Register

Next State
Combinational

Logic

Output
Combinational

Logic
D Q D Q D Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM
Outputs

FSM
Inputs

FSM (1A) 31 Young Won Lim
6/6/18

Traffic Lights Example

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 32 Young Won Lim
6/6/18

FSM Inputs and Outputs

L
A

L
A

L
B

L
B

T
B

T
B

T
A

T
A

Traffic Lights - Outputs

L
A

L
B

Sensor - Inputs

T
B

T
A

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 33 Young Won Lim
6/6/18

States

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

T
B

T
A

=0

=0

T
A =1

T
B =1

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 34 Young Won Lim
6/6/18

00
RG

01
RY

11
YR

10
GR

T
A
=1

T
A
=0

T
B
=1

T
B
=0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

State and State Transition Diagrams

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

0

R

G

G

G

G

Y

R

FSM (1A) 35 Young Won Lim
6/6/18

Next State Functions S1’ and S2’

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

S1 S0

S1 S0T B

S1 S0T B

S '1 = S1 S0 + S1S0

= S1 + S0

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

S1 S0T A

S1 S0T B

S '0 = S1S0T A + S1 S0T B

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 36 Young Won Lim
6/6/18

Output Functions : LA1, LA0, LB0, LB1

00
01
10

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

1 1

0 1

1 0

0 0

S
2
L

A1

1

1

0

0

S
1

LA1=S1

1 0

0 0

1 1

0 0

S
2

L
A0

1

1

0

0

S
1

LA0=S1S0

0

0

1

1

1

0

1

0

S
2

L
B1

1

1

0

0

S
1

1

0

1

0

S
2

1

1

0

0

S
1

1

0

0

0

L
B0

LB1=S1 LA0=S1S0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 37 Young Won Lim
6/6/18

Moore FSM

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

L
A1

L
A0

L
B1

L
B0

S
1

S
0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 38 Young Won Lim
6/6/18

Moore FSM Implementation

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

S'1 = S1 + S0

S '0 = S1S0T A + S1 S0T B

L
A1

L
A0

L
B1

L
B0

LA1=S1

LA0=S1S0

LB1=S1

LB0=S1S0

Next States

Outputs

S'0 = S1S0T A

+ S1 S0T B

S'1 = S1 + S0

Inputs T
A

T
B

Current State S
1

S
0

S
1

S
0

Current State S
1

S
0

LA1=S1

LA0=S1S0

LB1=S1

LB0=S1S0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 39 Young Won Lim
6/6/18

State Diagram

https://en.wikipedia.org/wiki/Finite-state_machine

FSM (1A) 40 Young Won Lim
6/6/18

Acceptors and Recognizers

https://en.wikipedia.org/wiki/Finite-state_machine

Acceptor FSM: parsing the string "nice"

FSM (1A) 41 Young Won Lim
6/6/18

Classifiers and Transducers

https://en.wikipedia.org/wiki/Finite-state_machine

A classifier is a generalization of
a finite state machine that,
similar to an acceptor,
produces a single output on termination
but has more than two terminal states

Transducers generate output based on a
given input and/or a state using actions.
They are used for control applications and in
the field of computational linguistics.

FSM (1A) 42 Young Won Lim
6/6/18

General Transducers

https://en.wikipedia.org/wiki/Transducer

Transducers are used in electronic communications
systems to convert signals of various physical forms to
electronic signals, and vice versa. In this example, the
first transducer could be a microphone, and the second
transducer could be a speaker.

FSM (1A) 43 Young Won Lim
6/6/18

Transducers : Moore and Mealy Machines

https://en.wikipedia.org/wiki/Finite-state_machine

Fig. 6 Transducer FSM: Moore
model example

Fig. 7 Transducer FSM: Mealy
model example

There are two input actions (I:):
"start motor to close the door if
command_close arrives" and
"start motor in the other
direction to open the door if
command_open arrives".

FSM (1A) 44 Young Won Lim
6/6/18

Moore machine

https://en.wikipedia.org/wiki/State_diagram

https://en.wikipedia.org/wiki/Finite-state_transducer

FSM (1A) 45 Young Won Lim
6/6/18

Mealy machine

https://en.wikipedia.org/wiki/Mealy_machine

https://en.wikipedia.org/wiki/State_diagram

FSM (1A) 46 Young Won Lim
6/6/18

State Transition Table

https://en.wikipedia.org/wiki/State_transition_table

FSM (1A) 47 Young Won Lim
6/6/18

Mathematical Models for acceptors

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A deterministic finite state machine or
acceptor deterministic finite state machine is
a quintuple (Σ, S, s

0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.
● s

0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S
● F is the set of final states, a (possibly empty) subset of S.

FSM (1A) 48 Young Won Lim
6/6/18

Deterministic Finite Automaton Example (1)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The following example is of a DFA M, with a binary alphabet,
which requires that the input contains an even number of 0s.

M = (Q, Σ, δ, q0, F) where
 Q = {S1, S2},
 Σ = {0, 1},
 q0 = S1,
 F = {S1}, and
 δ is defined by the following state transition table:

FSM (1A) 49 Young Won Lim
6/6/18

Deterministic Finite Automaton Example (2)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The state S1 represents that there has been an
even number of 0s in the input so far, while S2
signifies an odd number.

A 1 in the input does not change the state of the
automaton.
When the input ends, the state will show whether
the input contained an even number of 0s or not.
If the input did contain an even number of 0s, M will
finish in state S1, an accepting state, so the input
string will be accepted.

The language recognized by M is the regular
language given by the regular expression
((1*) 0 (1*) 0 (1*))*, where "*" is the Kleene star,
e.g., 1* denotes any number (possibly zero) of
consecutive ones.

FSM (1A) 50 Young Won Lim
6/6/18

Mathematical Model for transducers (1)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A finite-state transducer is a sextuple (Σ, Γ, S, s0, δ, ω), where:
Σ is the input alphabet (a finite non-empty set of symbols).
Γ is the output alphabet (a finite, non-empty set of symbols).
S is a finite, non-empty set of states.
s0 is the initial state, an element of S.
ω is the output function.

FSM (1A) 51 Young Won Lim
6/6/18

Mathematical Model for transducers (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

If the output function is a function of a state and input alphabet
(ω : S × Σ → Γ) that definition corresponds to the Mealy model,
and can be modelled as a Mealy machine.

If the output function depends only on a state (ω : S → Γ)
that definition corresponds to the Moore model,
and can be modelled as a Moore machine.

A finite-state machine with no output function at all is known as a
semiautomaton or transition system.

Young Won Lim
6/6/18

References

[1] http://en.wikipedia.org/
[2]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

