First Order Logic – Semantics (3A)

Young W. Lim 1/26/17 Copyright (c) 2016 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

Model

First specify a signature Constant Symbols Predicate Symbols Function Symbols

Determines the language

Given a language A model is specified A domain of discourse An interpretation

Model

- 1. a nonempty set D of **entities** called a **domain of discourse**
 - this domain is a <u>set</u>
 - each <u>element</u> in the set : <u>entity</u>
 - each constant symbol : one entity in the domain

2. an interpretation

- (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>. Normally, every entity is assigned to a constant symbol.
- (b) for each function,

an <u>entity</u> is assigned to each possible <u>input of entities</u> to the **function**

- (c) the predicate 'True' is always assigned the value T
 - The predicate 'False' is always assigned the value F
- (d) for every other predicate,

the value T or F is assigned

to each possible input of entities to the predicate

Model

Constant assignment

(a) an <u>entity</u> \rightarrow the <u>constant symbols</u>.

Function assignments

(b) an <u>entity</u> \rightarrow each possible <u>input of entities</u> to the **function**

Truth value assignments

- (c) the value T \rightarrow the predicate 'True' the value F \rightarrow the predicate 'False'
- (d) for every other **predicate**,

the value T or F is assigned \rightarrow every other predicate to each possible <u>input of entities</u> to the **predicate**

Signature Model Examples

Signature

- 1. constant symbols = { Mary, Fred, Sam }
- 2. predicate symbols = { married, young }
 married(x, y) : arity two
 young(x) : arity one

Model

- 1. domain of discourse D : the set of three particular individuals
- 2. interpretation
 - (a) a different individual is assigned to each of the constant symbols
 - (b) the truth value assignments

young(Mary) = F, young(Fred) = F, young(Sam) = T married(Mary, Mary) = F, married(Mary, Fred) = T, married(Mary, Sam) = F married(Fred, Mary) = T, married(Fred, Fred) = F, married(Fred, Sam) = F married(Sam, Mary) = F, married(Sam, Fred) = F, married(Sam, Sam) = F

Signature Model Examples

Signature

- 1. constant symbols = { Fred, Mary, Sam }
- 2. predicate symbols = { love } love(x, y) : arity two
- 3. function symbols = { mother } mother(x) : arity one

Model

- 1. domain of discourse D : the set of three particular individuals
- 2. interpretation
 - (a) a different individual is assigned to each of the constant symbols
 - (b) the truth value assignments

```
love(Fred, Fred) = F, love(Fred, Mary) = F, love(Fred, Ann) = F
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T
love(Ann, Fred) = T, love(Ann, Mary) = T, love(Ann, Ann) = F
```

(c) the function assignments mother(Fred) = Mary, mother(Mary) = Ann, mother(Ann) = - (no assignment) The truth values of **all sentences** are assigned :

1. the truth values for sentences developed with the symbols \neg , \land , \lor , \Rightarrow , \Leftrightarrow are assigned as in propositional logic.

2. the truth values for two terms connected by the = symbol is T if both terms refer to the same entity; otherwise it is F

3. the truth values for $\forall x p(x)$ has value T if p(x) has value T for **every assignment** to x of an entity in the domain D; otherwise it has value F

4. the truth values for $\exists x p(x)$ has value

T if p(x) has value T for **at least one assignment** to x of an entity in the domain D; otherwise it has value F

5. the operator **precedence** is as follows \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow

6. the quantifiers have precedence over the operators

7. **parentheses** change the order of the precedence

Formulas and Sentences

An formula

- A atomic formula
- The operator ¬ followed by a **formula**
- Two formulas separated by Λ , \forall , \Rightarrow , \Leftrightarrow
- A quantifier following by a variable followed by a formula

A sentence

- A formula with no free variables.
- $\forall x \text{ tall}(x)$: no free variable : a sentence
- $\forall x \text{ love}(x, y)$: free variable y : not a sentence

Finding the truth value

Find the truth values of all sentences

- 1. ¬, Λ , V, \Rightarrow , \Leftrightarrow
- 2. = symbol
- 3. ∀x p(x)
- 4. ∃x p(x)
- 5. the operator precedence is as follows \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow
- 6. the **quantifiers** $\forall \exists$ have precedence over the **operators**
- 7. parentheses change the order of the precedence

Signature

```
Constant Symbols = {Socrates, Plato, Zeus, Fido}
Predicate Symbols = {human, mortal, legs} all arity one
```

ΕV

Model

D: the set of these four particular individuals

Interpretation

(a) a different individual is assigned to each of the constant symbols

(b) the truth value assignment

human(Socrates)=T, human(Plato)=T, human(Zeus)=F, human(Fido)=F mortal(Socrates)=T, mortal(Plato)=T, mortal(Zeus)=F, mortal(Fido)=T legs(Socrates)=T, legs(Plato)=T, legs(Zeus)=T, legs(Fido)=T Sentence 1: human(Zeus) \land human(Fido) \lor human(Socrates) T Sentence 2: human(Zeus) \land (human(Fido) \lor haman(Socrates)) F Sentence 3: $\forall x$ human(x) Sentence 4: $\forall x$ mortal(x) Sentence 5: $\forall x$ legs(x) Sentence 6: $\exists x$ human(x) Sentence 7: $\forall x$ (human(x) \Rightarrow mortal(x))

References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog