
GAS Tutorial - 4. Sections & Relocation

Young W. Lim

2016-03-01 Tue

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 1 / 22



Outline

1 Sections and Relocation

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 2 / 22



Based on

�Using as�, Dean Elsner, Jay Fenlason & friends

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This �le is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the �le under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 3 / 22



Section

a section is a range of addresses, with no gaps

the linker ld

reads many object �les (initial address 0)
combines them to an executable
moves blocks of bytes (i.e, sections) of your program to their
run-time addresses

relocation: assigning run-time addresses to sections

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 4 / 22



Section Type

an object �le written by as has at least three sections

text section
data section
bss section

these sections can be empty

in an object �le: the text section starts at address 0, the data
section follows, and

�nally the bss section.

COFF or ELF output

named section (.section directives)

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 5 / 22



Relocation

when the sections are relocated, the ld should know

which data changes
how to change that data

whenever an address in the object �le is referenced,

the beginning of this reference to an address?
the length (in bytes) of this reference?
which section does the address refer to?
(address) (start-address of section)?
�Program-Counter relative�?

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 6 / 22



Section Relative

every address is expressed as

(section) + (o�set into section)

every expression has this section-relative nature

{secname N } notation: �o�set N into section sec-name.�

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 7 / 22



Absolute Section

addresses in the absolute section remain unchanged

address {absolute 0} is �relocated� to run-time address 0 by ld

generally, linker never use overlapping addresses

address in absolute sections must overlap

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 8 / 22



Unde�ned Section

{unde�ned U }

any address whose section is unknown at assembly time

U is to be �lled

to generate an unde�ned address

using an unde�ned symbol.
using a named common block

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 9 / 22



Linker

ld puts

all partial programs' text sections

in contiguous addresses in the linked program.

all partial programs' data sections

in contiguous addresses in the linked program.

all partial programs' bss sections

in contiguous addresses in the linked program.

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 10 / 22



Linker Section

Linker's view of section types

1 text section, data section, named section

2 bss section

3 absolute section

4 unde�nd section

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 11 / 22



Linker Section - text/data/named sections

these sections hold your program

as and ld treat them as separate but equal sections

these sections are di�erentiated when the program is running
the text section : unalterable

often shared among processes

contains instructions, constants

the data section : alterable:

C variables

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 12 / 22



Linker Section - bss sections

contains zeroed bytes when your program begins running

used to hold uninitialized variables or common storage

the length of each partial program's bss section is important

there is no need to store explicit zero bytes in the object �le

because the program starts out containing zeroed bytes

bss section was invented to eliminate those explicit zeros from
object �les.

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 13 / 22



Linker Section - absolute sections

Address 0 of this section is always �relocated� to runtime
address 0

useful when refering to an address that ld must not change

being �unrelocatable�: addresses do not change during
relocation.

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 14 / 22



Linker Section - unde�ned sections

This �section� is a catch-all for address references to objects
not in the preceding sections.

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 15 / 22



Subsections

used to locate separate groups of data in named sections close to
each other in the object �le

a section can be divided into numbered subsections

subsection number ranging from 0 to 8192

default subsection number 0

bytes with the same subsection number are assembled together

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 16 / 22



Subsection Usage

.text expression

.data expression

.section name , expression [COFF]

.subsection expression [ELF]

expression respresents subsection number

expression should use absolute address

.text (.text 0, equivalently)

.data (.data 0, equivalently)

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 17 / 22



Subsection Examples (1)

For example, to store constants in the text section not interspersed

`.text 0' before each section of code being output

`.text 1' before each group of constants being output.

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 18 / 22



Subsection Examples (2)

.text 0

.ascii �1st text subsection - (1)�

.text 1

.ascii �2nd text subsection.�

.data 0

.ascii �1st data subsection,�

.text 0

.ascii �1st text subsection - (2)�

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 19 / 22



Location Counter

each section has a location counter

incremented by one for every byte assembled into that section

subsection do not have its own location counter

by using .align, a location counter is manipulated indirectly

by using label, the value of a location counter can be captured

the location counter of a section which are being assembled is
said to be active

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 20 / 22



BSS Section

used for local common variable storage

allocate address space without data loading

when the programming starts running,

all the contents of the bss section are zeroed

.lcomm de�nes a local common symbol in the bss section

.comm can be used to declare a common symbol

.section name, �b� [COFF]

.section name, �a� [ELF]

.skip size, 0

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 21 / 22



TTTT

Young W. Lim GAS Tutorial - 4. Sections & Relocation 2016-03-01 Tue 22 / 22


	Sections and Relocation

