State Monad Examples (3E)

[^0]Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice.

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Monad, Monoid

monad (plural monads)

- An ultimate atom, or simple, unextended point; something ultimate and indivisible.
- (mathematics, computing) A monoid in the category of endofunctors.
- (botany) A single individual (such as a pollen grain) that is free from others, not united in a group.
monoid (plural monoids)
- (mathematics) A set which is closed under an associative binary operation, and which contains an element which is an identity for the operation.

```
class Monad m where ...
    m a
        mb
instance Monad Maybe where ...
```

ma
mb
Maybe a
single
parameter

Monadic type

Maybe Monad

```
class Monad m where
    return :: a -> m a
    (>>=) ::m a -> (a -> m b) -> m b
```

instance Monad Maybe where
-- return $\quad \therefore$ a -> Maybe a
return $x=$ Just x
-- (>>=) $\quad \therefore$ Maybe $\mathrm{a}->(\mathrm{a}->$ Maybe b) $->$ Maybe b
Nothing $\gg==_{-}=$Nothing
(Just x) $\gg=f=f x$
f : : a -> m b
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad

a monad is a parameterized type m
that supports return and $\gg=$ functions of the specified types
m must be a parameterized type,
rather than just a type (Maybe is not a concrete type)

It is because of this declaration
(Just x) $\gg=f=f x$
that the do notation can be used to sequence Maybe values.

More generally, Haskell supports the use of this notation with any monadic type.
examples of types that are monadic,
the benefits that result from recognizing and exploiting this fact.

List Monad

The Maybe monad provides a simple model of computations that can fail,
a value of type Maybe a is either Nothing (failure)
the form Just x for some x of type a (success)

The list monad generalises this notion,
by permitting multiple results in the case of success.

More precisely, a value of [a] is
either the empty list [] (failure)
or the form of a non-empty list $[x 1, x 2, \ldots, x n]$ (success)
for some xi of type a
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad

```
instance Monad [] where
    -- return :: a -> [a]
return x = [x]
-- (>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)
```

return converts a value into a successful result containing that value
>>= provides a means of sequencing computations that may produce multiple results:
xs >>= f applies the function f to each of the results in the list xs to give a nested list of results, which is then concatenated to give a single list of results.
(Aside: in this context, [] denotes the list type [a] without its parameter.)

$$
\begin{aligned}
& x s::[a] \\
& f:: a->[b] \\
& (\gg=)::[a]->(a->[b])->[b]
\end{aligned}
$$

List Monad and ST Monad

```
instance Monad [] where
    -- return :: a -> [a]
    return x = [x]
    -- (>>=) :: [a] -> (a -> [b]) -> [b]
    xs >>= f = concat (map f xs)
```

```
instance Monad ST where
    -- return :: a -> ST a
    return x = \s -> (x,s)
    -- (>>=) :: ST a -> (a -> ST b) -> ST b
    st >>= f = \s -> let (x,s')= st s in f x s'
```

$(\mathrm{x}, \mathrm{s}) \longrightarrow\left(\mathrm{x}, \mathrm{s}^{\prime}\right) \longrightarrow\left(\mathrm{y}, \mathrm{s}^{\prime}\right)$
$\left(\mathrm{x}, \mathrm{s}^{\prime}\right)=$ st s
return $\mathrm{x} \equiv$
$\longrightarrow \quad \overrightarrow{(x, s)}$
st $\gg=\mathrm{f} \equiv \underset{\mathrm{s}}{\longrightarrow} \overrightarrow{\left(\mathrm{y}, \mathrm{s}^{\prime}\right)}$
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer

```
type State = ...
```

type ST = State -> State
the problem of writing functions that manipulate some kind of state, represented by a type, whose detail is not our concern now.
a state transformer (ST), which takes the current state as its argument, and produces a modified state as its result, which reflects any side effects performed by the function:

A Generalized State Transformer

```
type State = ..
type ST = State -> State
type ST a = State -> (a, State)
want to return a result value in addition to the modified state generalized state transformers also return a result value, as a parameter of the ST type
State -> (a, State)
s -> (v, s')
```

s: input state, v: the result value, s': output state
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Returning a result value


```
(a_result, updated_state) :: (a, State)
st s :: ST a State st s :: (a, State)
(x, s'):: ST a State (x, s') :: (a, State)
```


Taking an argument

a state transformer that takes a character and returns an integer
type ST a = State -> (a, State) generalized ST
possible further generalization of the state transformer ST which takes an argument of type b
type STT $\mathbf{a} \mathbf{b}=\mathbf{b}->$ State $->(a$, State $) \quad$ further generalized ST
type STT ba=b $->$ State $->(a$, State $) \quad$ further generalized ST
no need to use more generalized ST type
can be exploiting currying.
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Curried Generalized State Transformer

type ST a $=$ State $->(\mathrm{a}$, State $)$	generalized ST
type STT ba $=\mathbf{b}->$ State $->(\mathrm{a}$, State $)$	further generalized ST
b \rightarrow ST a $=\mathbf{b}$-> State $->(\mathrm{a}$, State $)$	think currying

* Curried Function

$$
\begin{array}{ll}
f x y & f:: a->b->c \\
& \\
(f x) y & f:: a->(b->c)
\end{array}
$$

f \mathbf{x} returns a function of type \mathbf{b}-> c
g y
$\mathbf{g ~ : : ~ b ~ - > ~ c ~}$

Two State Transformers

instance Monad ST where

```
-- return :: a -> ST a
return x = \s -> (x,s)
```

-- (>>=) : : ST a -> (a -> ST b) -> ST b
st $\gg=f=$ ls $->$ let $\left(x, s^{\prime}\right)=$ st s in $f \times s^{\prime}$
>>= provides a means of sequencing state transformers:
st >>= fapplies the state transformer st to an initial state s,
then applies the function f to the resulting value x
to give a second state transformer (f x),
which is then applied to the modified state s ' to give the final result:

```
st >>= f = \s -> fx s'
    where (x,s') = st s
```

st $\gg=\mathrm{f}=$ ls $->\left(\mathrm{y}, \mathrm{s}^{\prime}\right)$
where $\left(x, s^{\prime}\right)=$ st s
$\left(y, s^{\prime}\right)=f x s^{\prime}$
$\left(x, s^{\prime}\right)=s t s$
f X^{\prime}

The type of the sequencer >>=

```
instance Monad ST where
    -- return :: a -> ST a
    return \(\mathrm{x}=\) \s -> \((\mathrm{x}, \mathrm{s})\)
    -- (>>=) :: ST a -> (a -> ST b) -> ST b
    st \(\gg=\mathrm{f}=\) ls \(->\) let \(\left(\mathrm{x}, \mathrm{s}^{\prime}\right)=\) st s in \(\mathrm{f} \times \mathrm{s}^{\prime}\)
st :: ST a
f :: a -> STb
(>>=) :: ST a -> (a -> ST b) -> ST b
st :: State -> (a, State)
f :: a -> State -> (b, State)
(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)
```

$$
\begin{array}{ll}
\left(x, s^{\prime}\right)=s t s & s \rightarrow\left(x, s^{\prime}\right) \\
\left(y, s^{\prime}\right)=f x s^{\prime} & s^{\prime} \rightarrow\left(y, s^{\prime}\right)
\end{array}
$$

type ST a = State -> (a , State)
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The type of st s and f x s'

```
st :: State -> (a, State)
f :: a -> State -> (b, State)
(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)
    I
st :: State -> (a, State)
st s :: (b, State)
(x,\mp@subsup{s}{}{\prime})=sts}
f :: a -> State -> (b, State)
f x :: State -> (b, State)
f x s' :: (b, State)
\[
\left(y, s^{\prime}\right)=f x s^{\prime} \quad s^{\prime} \rightarrow\left(y, s^{\prime}\right)
\]
```

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html
let ... in ...

```
cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
    let sideArea = 2 * pi * r * h
        topArea = pi * r^2
    in sideArea + 2 * topArea
```

The form is let <bindings> in <expression>.

The names that you define in the let part are accessible to the expression after the in part.

Notice that the names are also aligned in a single column.

For now it just seems that let puts the bindings first and the expression that uses them later whereas where is the other way around.
http://learnyouahaskell.com/syntax-in-functions

List, Monad, and ST Monads

```
instance Monad [] where
    -- return :: a -> [a]
    return x = [x]
    -- (>>=) :: [a] -> (a -> [b]) -> [b]
    xs >>= f = concat (map f xs)
```

instance Monad Maybe where

```
-- return \(\quad::\) a -> Maybe a
return \(\mathrm{x}=\) Just x
-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>=_= Nothing
(Just \(x\) ) >>=f=fx
```

instance Monad ST where
-- return :: a -> ST a
return $\mathrm{x}=$ |s -> (x, s)
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= $f=$ ls -> let $\left(x, s^{\prime}\right)=$ st s in $f x^{\prime}$

Dummy Constructor DC

type ST a = State -> (a, State) generalized ST
data ST0 $\mathrm{a}=\mathrm{DC}($ State $->(\mathrm{a}$, State $))$
types defined using the type mechanism
cannot be made into instances of classes.
types defined using the data mechanism can be made into instances of classes. but requires a dummy constructor (DC)

The application function apply0

```
type ST a = State -> (a, State) TYPE - NO INSTANCE
data ST0 a = DC (State -> (a, State)) DATA - INSTANCE ok
In order to strip away the dummy constructor,
define also the application function apply0
apply0 :: ST0 a -> State -> (a, State)
    input output
```


Removing Data Constructor

```
data STO a = DC (State -> (a, State)) Data Constructor
apply0 :: ST0 a -> State -> (a, State) Application Function
x :: a
f :: a -> State -> (b, State)
f x :: State -> (b, State)
(DC f) x :: ST0 a
apply0 (DC f) x :: State -> (b, State)
apply0 (DC f) x = fx
Definition to remove DC
```

(.) :: (b->c) -> (a->b) -> (a->c)
f. $g=1 x->f(g x)$
f. $g \mathrm{x}=\mathrm{f}(\mathrm{gx})$

DC f
DC (a -> State -> (b, State))
a -> DC (State -> (b, State))
(DC f) $x::$ DC (State -> (b, State))
(DC f) x :: ST0 a

apply0 st s and apply0 f x s'

```
type ST a = State -> (a, State)
data ST0 a = DC (State -> (a, State))
apply0 :: ST0 a -> State -> (a, State)
apply0 (DC f)x = fx
apply0 st s = (x,s') s s ( }\textrm{s},\mp@subsup{\textrm{s}}{}{\prime}
apply0 fx s = (y,s') s' 
```

```
st :: State -> (a, State)
st s :: (b, State)
f :: a -> State -> (b, State)
f x :: State -> (b, State)
f x s' :: (b, State)
```

```
(x,s') = st s
```

(x,s') = st s
s -> (x,s')
s -> (x,s')
(y,s')=fx s'

```
(y,s')=fx s' 
```


ST0 Monad

instance Monad STO where

```
-- return :. a -> ST a
return x = DC (\s -> (x,s))
```

-- (>>=) $\quad:$ ST a -> (a -> STT b) $->$ ST b
st $\gg=\mathrm{f}=\mathrm{DC}\left(\mathrm{ls}->\right.$ let $\left(x, s^{\prime}\right)=$ apply0 st s in apply0 ($\left.f \mathrm{x}\right) \mathrm{s}^{\prime}$)

```
apply0 st s = (x,s')
    s -> (x,s')
apply0 fx s = (y,s') s' 
```

the runtime overhead of manipulating the dummy constructor S can be eliminated by defining ST using the newtype mechanism
instance Monad ST where
-- return $::$ a -> ST a
return $x=$ ls -> (x, s)
-- (>>=) $\quad \therefore$ ST a -> (a -> ST b) -> ST b
st $\gg=\mathrm{f}=$ ls $->$ let $\left(x, s^{\prime}\right)=$ st s in $\mathrm{f} \times \mathrm{s}^{\prime}$

$$
\begin{array}{ll}
\left(x, s^{\prime}\right)=s t s & s \rightarrow\left(x, s^{\prime}\right) \\
\left(y, s^{\prime}\right)=f x s^{\prime} & s^{\prime} \rightarrow\left(y, s^{\prime}\right)
\end{array}
$$

ST0 Monad Summary

```
type ST a = State -> (a, State) generalized ST
data STO a = DC (State -> (a, State))
apply0 :: ST0 a -> State -> (a, State)
apply0 (DC f) x = f x
apply0 st s = (x,s')
apply0 f x s = (y,s')
instance Monad STO where
    -- return :: a -> ST a
return x = DC (\s -> (x,s))
    -- (>>=) : : ST a -> (a -> STT b) -> ST b
    st >>= f = DC (\s -> let (x, s') = apply0 st s in apply0 (f x) s')
```

$$
\begin{array}{ll}
\left(x, s^{\prime}\right)=s t s & s \rightarrow\left(x, s^{\prime}\right) \\
\left(y, s^{\prime}\right)=f x s^{\prime} & s^{\prime} \rightarrow\left(y, s^{\prime}\right)
\end{array}
$$

instance Monad ST where

```
-- return :: a -> ST a
return x = \s -> (x,s)
-- (>>=) :. ST a -> (a -> ST b) -> ST b
st >>= f = \s -> let (x,s') = st s in f x s'
```


Examples I (1)

```
pairs :: [a] -> [b] -> [(a,b)] dlo method
pairs xs ys = do x<- xs
    y <- ys
    return (x, y)
```

this function returns all possible ways of pairing elements from two lists
each possible value \times from the list $\mathbf{x s}$
each possible value y from the list $y s$ return the pair (x, y).

$$
\begin{aligned}
& x<-\mathbf{x s} \\
& y<-\boldsymbol{y s}
\end{aligned}
$$

Examples I (2)

```
pairs :: \([\mathrm{a}]\)-> \([\mathrm{b}]\)-> \([(\mathrm{a}, \mathrm{b})] \quad\) do notation
pairs xs ys = do \(x<-x s\)
    \(y<-y s\)
    return (x, y)
pairs xs ys \(=[(x, y) \mid x<-x s, y<-y s]\)
    comprehension notation
In fact, there is a formal connection
between the do notation and the comprehension notation.
Both are simply different shorthands
for repeated use of the >>= operator for lists.
```


Example II (1)

(>>) :: Monad m => m a -> m b -> m b;
a1 >> a2 takes the actions a1 and a2 and returns the mega action which is a1-then-a2-returning-the-value-returned-by-a2.

Simple Examples (1)

```
type State = Int
fresh :: STO Int
fresh = DC (\n -> (n, n+1))
wtf1 = fresh >>
    fresh >>
    fresh >>
    fresh
```

ghci> apply0 wtf1 0

Simple Examples (2)

the >>= sequencer is kind of like >>
only it allows you to "remember" intermediate values
that may have been returned.
return :: a -> STO a
takes a value x and yields an action
that doesnt actually transform the state, but just returns the same value x

Simple Examples (2)

```
wtf2 = fresh >>= \n1 ->
    fresh >>= \n2 ->
    fresh >>
    fresh >>
    return [n1, n2]
wtf2' = do {n1 <- fresh;
        n2 <- fresh;
        fresh;
        fresh;
        return [n1, n2];
    }
```

ghci> apply0 wtf2 0

Simple Examples (3)

```
wtf3 = do n1 <- fresh
    fresh
    fresh
    fresh
    return n1
```


Dice Examples

to generate Int dice - result : a number between 1 and 6
throw results from a pseudo-random generator of type StdGen.
the type of the state processors will be

State StdGen Int

StdGen -> (Int, StdGen)
https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

```
the StdGen type : an instance of RandomGen
randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)
assume a is Int and g is StdGen
the type of randomR
randomR (1, 6) :: StdGen -> (Int, StdGen)
```

already have a state processing function

randomR

```
randomR (1, 6) :: StdGen -> (Int, StdGen)
rollDie :: State StdGen Int
rollDie = state $ randomR (1, 6)
```


Some Examples (1)

module StateGame where
import Control.Monad.State
-- Example use of State monad
-- Passes a string of dictionary $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
-- Game is to produce a number from the string.
-- By default the game is off, a C toggles the
-- game on and off. A 'a' gives +1 and a b gives -1.
-- E.g
-- 'ab' = 0
-- 'ca' = 1
-- 'cabca' = 0
-- State = game is on or off \& current score
-- $\quad=($ Bool, Int $)$

Some Examples (2)

```
type GameValue = Int
type GameState = (Bool, Int)
playGame :: String -> State GameState GameValue
playGame [] = do
```

 (_, score) <- get
 return score
 https://wiki.haskell.org/State_Monad

Some Examples (3)

```
playGame (x:xs) = do
    (on, score) <- get
    case x of
        'a' | on -> put (on, score + 1)
        'b' | on -> put (on, score - 1)
        'c' -> put (not on, score)
        -> put (on, score)
```

 playGame xs
 startState $=($ False, 0$)$
main = print \$ evalState (playGame "abcaaacbbcabbab") startState

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

[^0]: Copyright (c) 2016-2017 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

