
Young Won Lim
7/22/20

●

●

OpenMP Examples (1A)

Young Won Lim
7/22/20

 Copyright (c) 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

OpenMP Hello World
(1A)

3 Young Won Lim
7/22/20

Installation

STEP 1: Check the GCC version of the compiler
gcc –version

STEP 2: Configuring OpenMP
echo | cpp -fopenmp -dM |grep -i open
sudo apt install libomp-dev

STEP 3: Setting the number of threads
export OMP_NUM_THREADS=8

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

OpenMP Hello World
(1A)

4 Young Won Lim
7/22/20

Parallel regions

// OpenMP header
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

int nthreads, tid;

// Begin of parallel region
#pragma omp parallel private(nthreads, tid)
{

// Getting thread number
tid = omp_get_thread_num();
printf("Welcome to GFG from thread = %d\n", tid);
if (tid == 0) {

// Only master thread does this
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
}

}

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

OpenMP Hello World
(1A)

5 Young Won Lim
7/22/20

Private variables

#include <omp.h>

main(int argc, char *argv[]) {

int nthreads, tid;

/* Fork a team of threads with each thread having a private tid variable */
#pragma omp parallel private(tid)
{

/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

 }

https://computing.llnl.gov/tutorials/openMP/#Compiling

OpenMP Hello World
(1A)

6 Young Won Lim
7/22/20

OpenMP Code Structure

#include <omp.h>

main () {
int var1, var2, var3;
Serial code
…

Beginning of parallel region. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{

Parallel region executed by all threads
Other OpenMP directives
Run-time Library calls
All threads join master thread and disband

}

Resume serial code
...

}

https://computing.llnl.gov/tutorials/openMP/

OpenMP Hello World
(1A)

7 Young Won Lim
7/22/20

OpenMP Directives

#pragma omp parallel [clause ...] newline
 if (scalar_expression)
 private (list)
 shared (list)
 default (shared | none)
 firstprivate (list)
 reduction (operator: list)
 copyin (list)
 num_threads (integer-expression)

 structured_block

https://computing.llnl.gov/tutorials/openMP/

OpenMP Hello World
(1A)

8 Young Won Lim
7/22/20

OpenMP Directives

Directive name
A valid OpenMP directive.
Must appear after the pragma and before any clauses.

[clause, …]
Optional.
Clauses can be in any order, and repeated as necessary
unless otherwise restricted.

Newline
Required.
Precedes the structured block
which is enclosed by this directive.

https://computing.llnl.gov/tutorials/openMP/

OpenMP Hello World
(1A)

9 Young Won Lim
7/22/20

Installation

Compile:
gcc -fopenmp test.c

Execute:
./a.out

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

OpenMP Hello World
(1A)

10 Young Won Lim
7/22/20

Number of cores

grep processor /proc/cpuinfo | wc -l

sysconf(_SC_NPROCESSORS_CONF)
sysconf(_SC_NPROCESSORS_ONLN)

grep -c ^processor /proc/cpuinfo

grep -c ^cpu /proc/stat # subtract 1 from the result

https://stackoverflow.com/questions/150355/programmatically-find-the-number-of-cores-on-a-machine

OpenMP Hello World
(1A)

11 Young Won Lim
7/22/20

OpenMP API Overview

The OpenMP 3.1 API is comprised of three distinct components:

● Compiler Directives
● Runtime Library Routines
● Environment Variables

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

12 Young Won Lim
7/22/20

Compiler Directives

● Spawning a parallel region
● Dividing blocks of code among threads
● Distributing loop iterations between threads
● Serializing sections of code
● Synchronization of work among threads

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

13 Young Won Lim
7/22/20

Runtime Library Routines

● Setting and querying the number of threads
● Querying a thread's unique identifier (thread ID),

a thread's ancestor's identifier, the thread team size
● Setting and querying the dynamic threads feature
● Querying if in a parallel region, and at what level
● Setting and querying nested parallelism
● Setting, initializing and terminating locks and nested locks
● Querying wall clock time and resolution

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

14 Young Won Lim
7/22/20

Environment Variables

● Setting the number of threads
● Specifying how loop iterations are divided
● Binding threads to processors
● Enabling/disabling nested parallelism;

setting the maximum levels of nested parallelism
● Enabling/disabling dynamic threads
● Setting thread stack size
● Setting thread wait policy

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

15 Young Won Lim
7/22/20

Examples

Compiler Directive Examples

#pragma omp parallel
#pragma omp parallel private(partial_Sum) shared(total_Sum)
#pragma omp parallel private(thread_id)
#pragma omp barrier
#pragma omp for
#pragma omp critical

Runtime Library Routine Examples

omp_get_thread_num();
omp_get_max_threads();

https://stackoverflow.com/questions/150355/programmatically-find-the-number-of-cores-on-a-machine

OpenMP Hello World
(1A)

16 Young Won Lim
7/22/20

Hello

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv) {

 printf(“Hello from process: %d\n”, omp_get_thread_num());

 return 0;
}

// only one thread giving us a Hello statement
// must use the #pragma omp parallel { … } directive
// for multiple threads

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

17 Young Won Lim
7/22/20

Hello

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int thread_id;

 #pragma omp parallel
 {
 printf(“Hello from process: %d\n”, omp_get_thread_num());
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

18 Young Won Lim
7/22/20

Private clauses

The PRIVATE clause declares variables in its list
to be private to each thread.

● A new object of the same type is declared once
for each thread in the team

● All references to the original object are replaced with
references to the new object

● Should be assumed to be uninitialized for each thread

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

19 Young Won Lim
7/22/20

Shared clauses

The SHARED clause declares variables in its list t
o be shared among all threads in the team.

A shared variable exists in only one memory location and
all threads can read or write to that address

It is the programmer's responsibility to ensure that
multiple threads properly access SHARED variables
(such as via CRITICAL sections)

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

20 Young Won Lim
7/22/20

Shared clauses

Variables that are created and assigned
inside of a parallel section of code will be
inherently be private

variables created outside of parallel sections
will be inherently public.

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

21 Young Won Lim
7/22/20

Data Sharing Rules – Implicit Rules

int n = 10; // shared
int a = 7; // shared

#pragma omp parallel for
for (int i = 0; i < n; i++) // i private
{
 int b = a + i; // b private
 ...
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

22 Young Won Lim
7/22/20

Data Sharing Rules – Explicit Rules

#pragma omp parallel for shared(n, a)
for (int i = 0; i < n; i++)
{
 int b = a+ i;
 ...
}

#pragma omp parallel for shared(n, a) private(b)
for (int i = 0; i < n; i++)
{
 b = a + i;
 ...
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

23 Young Won Lim
7/22/20

Data Sharing Rules – Explicit Rules

int p = 0;
// the value of p is 0

#pragma omp parallel private(p)
{
 // the value of p is undefined
 p = omp_get_thread_num();
 // the value of p is defined
 ...
}
// the value of p is undefined

#pragma omp parallel
{
 int p = omp_get_thread_num();
 ...
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

24 Young Won Lim
7/22/20

Data Sharing Rules – Default(Shared)

int a, b, c, n;
...

#pragma omp parallel for default(shared)
for (int i = 0; i < n; i++)
{
 // using a, b, c
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

25 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

int n = 10;
std::vector<int> vector(n);
int a = 10;

#pragma omp parallel for default(none) shared(n, vector)
for (int i = 0; i < n; i++)
{
 vector[i] = i * a;
}

error: ‘a’ not specified in enclosing parallel
 vector[i] = i * a;
 ^
error: enclosing parallel
 #pragma omp parallel for default(none) shared(n, vector)
 ^

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

26 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

int n = 10;
std::vector<int> vector(n);
int a = 10;

#pragma omp parallel for default(none) shared(n, vector, a)
for (int i = 0; i < n; i++)
{
 vector[i] = i * a;
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

27 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

The default context of a variable is determined by the following rules:

● static variables – shared.
● auto variables in a parallel region – private
● dynamically allocated objects – shared.
● heap allocated variables – shared.

there can be only one shared heap.
● all variables defined outside a parallel construct
● – shared in a parallel region
● loop iteration variables are private within their loops.

the value of the iteration variable after the loop
is the same as if the loop were run sequentially.

● memory allocated within a parallel loop
by the alloca function
persists only for the duration of one iteration,
and is private for each thread.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

28 Young Won Lim
7/22/20

alloca()

NAME
 alloca - allocate memory that is automatically freed

SYNOPSIS
 #include <alloca.h>

 void *alloca(size_t size);

DESCRIPTION
 The alloca() function allocates size bytes of space in the stack
 frame of the caller. This temporary space is automatically freed
 when the function that called alloca() returns to its caller.

RETURN VALUE
 The alloca() function returns a pointer to the beginning of the
 allocated space. If the allocation causes stack overflow, program
 behavior is undefined.

https://man7.org/linux/man-pages/man3/alloca.3.html

OpenMP Hello World
(1A)

29 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

int E1; /* shared static */

void main (argvc,...) { /* argvc is shared */
 int i; /* shared automatic */

void *p = malloc(...); /* memory allocated by malloc */
 /* is accessible by all threads (shared) */
 /* and cannot be privatized */

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

30 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

void main (argvc,...) { // argvc is shared
int i; void *p = malloc(...);

#pragma omp parallel firstprivate (p)

 {
 int b; // private automatic
 static int s; // shared static

 #pragma omp for
 for (i =0;...) {
 b = 1; // b is still private here !
 foo (i); // i is private here because it is an iteration variable
 }

#pragma omp parallel
 {
 b = 1; // b is shared here because it
 } // is another parallel region
 }
}

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

31 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

int E2; /*shared static */

void foo (int x) { /* x is private for the parallel */
 /* region it was called from */

int c; /* the same */
 ... }

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

32 Young Won Lim
7/22/20

Data Sharing Rules – Default(none)

The private clause declares the variables in the list to be
private to each thread in a team.

The firstprivate clause provides a superset of the functionality
provided by the private clause.
The private variable is initialized by the original value of the variable
when the parallel construct is encountered.

The lastprivate clause provides a superset of the functionality
provided by the private clause.
The private variable is updated after the end of the parallel construct.

The shared clause declares the variables in the list to be
shared among all the threads in a team.
All threads within a team access the same storage area for shared variables.

The reduction clause performs a reduction on the scalar variables
that appear in the list, with a specified operator.

The default clause allows the user
to affect the data-sharing attribute of the variables appeared in the parallel construct.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

33 Young Won Lim
7/22/20

Nested Parallelism (1)

void fun1()
{
 for (int i=0; i<80; i++)
 ...
}

main()
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 ...

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

OpenMP Hello World
(1A)

34 Young Won Lim
7/22/20

Nested Parallelism (2)

void fun1()
{
 #pragma omp parallel for
 for (int i=0; i<80; i++)
 ...
}

main
{
 #Pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 …

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

OpenMP Hello World
(1A)

35 Young Won Lim
7/22/20

Nested Parallelism (3)

void fun1()
{
 #pragma omp taskloop
 for (int I = 0; i<80; i++)
 ...
}

main
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 ...

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

OpenMP Hello World
(1A)

36 Young Won Lim
7/22/20

Hello

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int thread_id;

 #pragma omp parallel private(thread_id)
 {
 thread_id = omp_get_thread_num();
 printf(“Hello from process: %d\n”, thread_id);
 }

 return 0;
}

// create a separate instance of thread_id for each task.

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

37 Young Won Lim
7/22/20

Barrier and critical directives

#pragma omp barrier

The barrier directive stops all processes
for proceeding to the next line of code
until all processes have reached the barrier.
This allows a programmer
to synchronize sequences in the parallel process.

#pragma omp critical { … }

A critical directive ensures that
a line of code is only run by one process at a time,
ensuring thread safety in the body of code.

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

38 Young Won Lim
7/22/20

Barrier (1)

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 //define loop iterator variable outside parallel region
 int i;
 int thread_id;

 #pragma omp parallel
 {
 thread_id = omp_get_thread_num();

 //create the loop to have each thread print hello.
 for(i = 0; i < omp_get_max_threads(); i++){
 printf(“Hello from process: %d\n”, thread_id);
 }
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

39 Young Won Lim
7/22/20

Barrier (2)

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int i;
 int thread_id;

 #pragma omp parallel
 {
 thread_id = omp_get_thread_num();

 for(i = 0; i < omp_get_max_threads(); i++){
 if(i == thread_ID){
 printf(“Hello from process: %d\n”, thread_id);
 }
 }
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

40 Young Won Lim
7/22/20

Barrier (3)

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int i;
 int thread_id;

 #pragma omp parallel
 {
 thread_id = omp_get_thread_num();

 for(int i = 0; i < omp_get_max_threads(); i++){
 if(i == omp_get_thread_num()){
 printf(“Hello from process: %d\n”, thread_id);
 }
 #pragma omp barrier
 }
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

41 Young Won Lim
7/22/20

OMP for

OpenMP’s power comes from
easily splitting a larger task into multiple smaller tasks.
Work-sharing directives allow for simple and effective splitting
of normally serial tasks into fast parallel sections of code.

The directive omp for divides a normally serial for loop into a parallel task.

#pragma omp for { … }

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

42 Young Won Lim
7/22/20

OMP for

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

 printf(“Total Sum: %d\n”, total_Sum);
 return 0;
}

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int partial_Sum, total_Sum;

 #pragma omp parallel private(partial_Sum) shared(total_Sum)
 {
 partial_Sum = 0;
 total_Sum = 0;

 #pragma omp for
 {
 for(int i = 1; i <= 1000; i++){
 partial_Sum += i;
 }
 }

 //Create thread safe region.
 #pragma omp critical
 {
 //add each threads partial sum to the total sum
 total_Sum += partial_Sum;
 }
 }

OpenMP Hello World
(1A)

43 Young Won Lim
7/22/20

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

