
Young Won Lim
4/13/18

Functions (4A)

Young Won Lim
4/13/18

 Copyright (c) 2015 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Functions (4A) 16 Young Won Lim
4/13/18

Floor and Ceiling Functions

https://en.wikipedia.org/wiki/Function_(mathematics)

Functions (4A) 17 Young Won Lim
4/13/18

Floor and Ceiling Functions

https://en.wikipedia.org/wiki/Function_(mathematics)

Functions (4A) 18 Young Won Lim
4/13/18

Floor and Ceiling Functions

https://en.wikipedia.org/wiki/Function_(mathematics)

the floor function is the function that takes as input a real
number x and gives as output the greatest integer less
than or equal to x, denoted floor(x) = x⌊ ⌋.

Similarly, the ceiling function maps x to the least integer
greater than or equal to x, denoted ceiling(x) = x⌈ ⌉.

Young Won Lim
4/13/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/12/18

Relations (3A)

Young Won Lim
4/12/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Relations (4B) 27 Young Won Lim
4/12/18

Transitive Relation

i (i , j)≠0

j

j
(j , k)≠0

k

(i , k)≠0

i

k

(iRj) ∧ (jRk) (i R k)

∀ x ,∀ y ,∀ z [((x , y) ∈ R ∧ (y , z) ∈ R) → (x , z) ∈ R]

Relations (4B) 28 Young Won Lim
4/12/18

Not Transitive Relation

i (i , j)≠0

j

j
(j , k)≠0

k

(i , k)=0

i

k

(iRj) ∧ (jRk) (i R k)

¬{∀ x ,∀ y ,∀ z [((x , y) ∈ R ∧ (y , z) ∈ R) → (x , z) ∈ R] }
∃ x ,∃ y ,∃ z ¬[((x , y) ∈ R ∧ (y , z) ∈ R) → (x , z) ∈ R]
∃ x ,∃ y ,∃ z ¬[¬((x , y) ∈ R ∧ (y , z) ∈ R) ∨ ((x , z) ∈ R)]
∃ x ,∃ y ,∃ z [(x , y) ∈ R ∧ (y , z) ∈ R ∧ ((x , z) ∉ R)]

Relations (4B) 29 Young Won Lim
4/12/18

Relation Examples

R
1
∈ {(1,a) , (2,b) , (3,a) , (3,b)}

R
2
∈ {(a , x) , (a , y) , (b , y), (b , z)}

1

2

3

x

y

z

a

b

Relations (4B) 30 Young Won Lim
4/12/18

Composite Relation Examples

R
1
∈ {(1,a) , (2,b) , (3,a) , (3,b)}

R
2
∈ {(a , x) , (a , y) , (b , y) , (b , z)}

1

2

3

x

y

z

a

b

R
2
∘R

1
∈ {(1, x) , (1, y) , (2, y) , (2, z) , (3, x), (3, y) , (3, z)}

1

2

3

x

y

z

Relations (4B) 31 Young Won Lim
4/12/18

Composite Relation Examples

R
1
∈ {(1,a) , (2,b) , (3,a) , (3,b)}

R
2
∈ {(a , x) , (a , y) , (b , y) , (b , z)}

1

2

3

x

y

z

a

b

R
1
∘R

2
∈

{(1, x) , (1, y) , (2, y) , (2, z) , (3, x) , (3, y) , (3, z)}

1

2

3

x

y

z

A1 = [1 0

0 1

1 1
]1

2

3

a b

a

b

x y z

A1 A2 = [1 0

0 1

1 1
][1 1 0

0 1 1] = [1 1 0

0 1 1

1 2 1
]1

2

3

x y z

A 2 = [1 1 0

0 1 1]

Relations (4B) 32 Young Won Lim
4/12/18

Matrix of a Relation

R
1
∈ {(1,a) , (2,b) , (3,a) , (3,b)}

R
2
∈ {(a , x) , (a , y) , (b , y) , (b , z)}

A1 = [1 0

0 1

1 1
]1

2

3

a b

a

b

x y z

A1 A2 = [1 0

0 1

1 1
][1 1 0

0 1 1] = [1 1 0

0 1 1

1 2 1
]1

2

3

x y z

R
2
∘R

1
∈ {(1, x) , (1, y) , (2, y) , (2, z) , (3, x), (3, y) , (3, z)}

A 2 = [1 1 0

0 1 1]

Relations (4B) 33 Young Won Lim
4/12/18

Composite Relation Properties

R
1 R

2

A1 A2

R
2
∘R

1

(i , k) ∈ R2∘R1
aik ≠ 0 of A1 A2

A
1 A

2

X Y Z

X Z

i k

i kj

Relations (4B) 34 Young Won Lim
4/12/18

Composite Relation Examples

R
1
∈ {(1,a) , (2,b) , (3,a) , (3,b)}

R
2
∈ {(a , x) , (a , y) , (b , y) , (b , z)}

A1 = [1 0

0 1

1 1
]1

2

3

a b

a

b

x y z

A1 A2 = [1 0

0 1

1 1
][1 1 0

0 1 1] = [1 1 0

0 1 1

1 2 1
]1

2

3

x y z

R
2
∘R

1
∈ {(1, x) , (1, y) , (2, y) , (2, z) , (3, x), (3, y) , (3, z)}

A 2 = [1 1 0

0 1 1]

(i , k) ∈ R
2
∘R

1
aik ≠ 0 of A1 A2

1

2

3

x

y

z

Relations (4B) 35 Young Won Lim
4/12/18

Composite Relation Property Examples

A1 A2 = [1 0

0 1

1 1
] [1 1 0

0 1 1] = [1 1 0

0 1 1

1 2 1
]

i

k

i

k

s t
u

v

su+tv

s ∈ {0, 1}

t ∈ {0, 1}

u ∈ {0, 1}

v ∈ {0, 1}

A1 = [1 0

0 1

1 1
]

A
2

= [1 1 0

0 1 1]

1

2

3

a b

a

b

x y z

i ∈ {1, 2, 3}
k ∈ {x , y , z}

a b
a

b

(i , k) ∈ R
2
∘R

1

su+tv ≠ 0

nonzero (i , k)th element of A
1
A

2

(su≠0) ∨ (tv≠0)

(s=1∧u=1) ∨ (t=1∧v=1)

Relations (4B) 36 Young Won Lim
4/12/18

Sufficient Part

A1 A2 = [1 0

0 1

1 1
] [1 1 0

0 1 1] = [1 1 0

0 1 1

1 2 1
]

i

k

i

k

s t
u

v

su+tv

s ∈ {0, 1}

t ∈ {0, 1}

u ∈ {0, 1}

v ∈ {0, 1}

su+tv ≠ 0

su = 1

(s = 1)
(u = 1)

(t = 1)
(v = 1)

tv = 1

A1 = [1 0

0 1

1 1
]

A
2

= [1 1 0

0 1 1]

1

2

3

a b

a

b

x y z

i ∈ {1, 2, 3}
k ∈ {x , y , z}

a b
a

b

(i , a) ∈ R
1

(a , k) ∈ R2

(i , b) ∈ R
1

(b , k) ∈ R2

(i , k) ∈ R
2
∘R

1
(i , k) ∈ R

2
∘R

1

(aik ≠ 0)

Relations (4B) 37 Young Won Lim
4/12/18

Necessary Part

A1 A2 = [1 0

0 1

1 1
] [1 1 0

0 1 1] = [1 1 0

0 1 1

1 2 1
]

i

k

i

k

s t
u

v

su+tv

s ∈ {0, 1}

t ∈ {0, 1}

u ∈ {0, 1}

v ∈ {0, 1}

su+tv ≠ 0

su = 1

(s = 1)
(u = 1)

(t = 1)
(v = 1)

tv = 1

A1 = [1 0

0 1

1 1
]

A
2

= [1 1 0

0 1 1]

1

2

3

a b

a

b

x y z

i ∈ {1, 2, 3}
k ∈ {x , y , z}

a b
a

b

(i , a) ∈ R
1

(a , k) ∈ R2

(i , b) ∈ R
1

(b , k) ∈ R2

(i , k) ∈ R
2
∘R

1

(aik ≠ 0)

Relations (4B) 38 Young Won Lim
4/12/18

Transitivity Test Examples (1)

R ∈ {(a ,a) , (b ,b) , (c , c) , (d ,d) , (b , c) , (c , b)}

A = [
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1
]

a

b

c

a b

A A = [
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1
][
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1
] = [

1 0 0 0

0 2 2 0

0 2 2 0

0 0 0 1
]

R ∘R ∈ {(a ,a) , (b ,b) , (c , c) , (d ,d) , (b , c) , (c , b)}

c d

d

a

b

c

a b c d

d

A
2 = [

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1
]

a

b

c

a b c d

d

set non-zero element to 1

?

Relations (4B) 39 Young Won Lim
4/12/18

Transitivity Test Examples (2)

Relations (4B) 40 Young Won Lim
4/12/18

Transitivity Test Examples (3)

a aa

b

b

c

d dd

c

b

c

b

c

b

c

(a ,a)

(b ,b)
(b , c)
(c , b)
(c , c)

(b ,b)
(b , c)
(c , b)
(c , c)

(d ,d)

Relations (4B) 41 Young Won Lim
4/12/18

Transitivity Test

R

A
2

R ∘R

A = A
2 transitive relation R

A

X Y Z

X Z

i k

i kj

R

A

A = A
2 →

A = A
3 →

A = A
n →

⋯

⋯

Relations (4B) 42 Young Won Lim
4/12/18

Transitivity Condition

A = [
a b c d

e f g h

i j k l

m n o p
]1

2

3

1 2 3

4

4

A
2 = [

∗ ∗ ∗ ∗
e f g h

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]1

2

3

1 2 3

4

4

[
∗ ∗ c ∗
∗ ∗ g ∗
∗ ∗ k ∗
∗ ∗ o ∗

]
1

2

3

1 2 3

4

4

= [
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]1

2

3

1 2 3

4

4

nonzero (i , j)th element of Anonzero (i , j)th element of A
2 ⇒

e⋅c + f⋅g + g⋅k + h⋅o ≠ 0g ≠ 0

?

Relations (4B) 43 Young Won Lim
4/12/18

A non-zero element of A2

a e = 1

(2,1) ∈ R

(1,3) ∈ R

b f = 1 c g = 1 d h = 1

(2,2) ∈ R

(2,3) ∈ R

(2,3) ∈ R

(3,3) ∈ R

(2,4) ∈ R

(4,3) ∈ R
(2,3) ∈ R

a⋅e + b⋅f + c⋅g + d⋅h ≠ 0∨ ∨ ∨

A
2 = [

∗ ∗ ∗ ∗
e f g h

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]1

2

3

1 2 3

4

4

[
∗ ∗ c ∗
∗ ∗ g ∗
∗ ∗ k ∗
∗ ∗ o ∗

]
1

2

3

1 2 3

4

4

= [
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]1

2

3

1 2 3

4

4

∀ x ,∀ y ,∀ z [((x , y) ∈ R ∧ (y , z) ∈ R) → (x , z) ∈ R]

⇒ A

Relations (4B) 44 Young Won Lim
4/12/18

Binary Relations and Digraphs

A = {0,1,2, 3,4, 5,6}

0 1 2 3

R = [
1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

]
4 5 6

0

1

2

3

4

5

6

R ⊂ A×A

0

36
4

1 2

5

R = {(a ,b)∣a ≡ b (mod 3)}

http://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s7_1.pdf

Relations (4B) 45 Young Won Lim
4/12/18

Reflexive Relation

0 1 2 3

R = [
1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

]
4 5 6

0

1

2

3

4

5

6

0

36
4

1 2

5

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

Relations (4B) 46 Young Won Lim
4/12/18

Symmetric Relation

0 1 2 3

R = [
1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

]
4 5 6

0

1

2

3

4

5

6

0

36
4

1 2

5

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

Relations (4B) 47 Young Won Lim
4/12/18

Transitive Relation

0 1 2 3

RR = [
3 0 0 3 0 0 3

0 2 0 0 2 0 0

0 0 2 0 0 2 0

3 0 0 3 0 0 3

0 2 0 0 2 0 0

0 0 2 0 0 2 0

3 0 0 3 0 0 3

]
4 5 6

0

1

2

3

4

5

6

0

36

0

36

0

36

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

Relations (4B) 48 Young Won Lim
4/12/18

Transitive Relation

transitive R = R
2

Relations (4B) 49 Young Won Lim
4/12/18

Reflexive and Symmetric Closure

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

Not Reflexive R Reflexive Closure of Rthe minimal addition

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

Not Symmetric R Symmetric Closure of Rthe minimal addition

1

2

3

4

5

1 2 3 4 5

Relations (4B) 50 Young Won Lim
4/12/18

Transitive Closure

 R

n

n

A R
∗ = ∪ n=1

∞
R

n

= R∪R
2∪ ⋯ ∪R

n

A ∨ A
2 ∨ ⋯ ∨ A

n

set non-zero element to 1

Relations (4B) 51 Young Won Lim
4/12/18

Transitive Closure Example 1

not transitive

A ≠ A
2

transitive closure of A

A ≠ tc (A)

Relations (4B) 52 Young Won Lim
4/12/18

Transitive Closure Example 2-a

RX

a

b

c

X

a

b

c

A = [1 1 1

0 0 1

0 0 0
]a

b

c

a b c

RX

a

b

c

X

a

b

c

R X

a

b

c

R ∘RX

a

b

c

X

a

b

c

A
2 = [1 1 1

0 0 0

0 0 0
]a

b

c

a b c

R X

a

b

c

A
3 = [1 1 1

0 0 0

0 0 0
]a

b

c

a b c

Relations (4B) 53 Young Won Lim
4/12/18

Transitive Closure Example 2-b

RX

a

b

c

X

a

b

c

a

bc

A = [1 1 1

0 0 1

0 0 0
]a

b

c

a b c

A
2 = [1 1 1

0 0 0

0 0 0
]a

b

c

a b c

A
3 = [1 1 1

0 0 0

0 0 0
]a

b

c

a b c

A
∗ = [1 1 1

0 0 1

0 0 0
]a

b

c

a b c

But the transitive closure
of A is equal to A

A ≠ A
2

transitive

A ≠ A
2

A = tc (A) transitive

Relations (4B) 54 Young Won Lim
4/12/18

Transitive Closure Example 3

RX

a

b

c

X

a

b

c

a

bc

A = [1 1 0

0 0 1

0 0 0
]a

b

c

a b c

A
2 = [1 1 1

0 0 0

0 0 0
]a

b

c

a b c

A
3 = [1 1 1

0 0 0

0 0 0
]a

b

c

a b c

A
∗ = [1 1 1

0 0 1

0 0 0
]a

b

c

a b c

And the transitive closure
of A is not equal to A

A ≠ A
2

not transitive

A ≠ A
2

A ≠ tc (A)

not transitive

Relations (4B) 55 Young Won Lim
4/12/18

Transitive Closure Example 4

RX

a

b

X

a

b

ba

A = [1 1

1 0]a

b

a b

A
2 = [2 1

1 1]a

b

a b

A ≠ A
2

A ≠ tc (A)

not transitive

A
∗ = [1 1

1 1]a

b

a b

Young Won Lim
4/12/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/12/18

Equivalence Relations (4A)

Young Won Lim
4/12/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Equivalence Relations (4A) 3 Young Won Lim
4/12/18

Equivalence Relation

a binary relation that is at the same time
● a reflexive relation,
● a symmetric relation and
● a transitive relation.

The relation "is equal to" is a primary example of an equivalence relation.

Thus for any numbers a, b, and c:

 a=a (reflexive property),
 if a=b then b=a (symmetric property), and
 if a=b and b=c then a=c (transitive property).

Any equivalence relation, as a consequence of
the reflexive, symmetric, and transitive properties,
provides a partition of a set into equivalence classes.

https://en.wikipedia.org/wiki/Equivalence_relation

Equivalence Relations (4A) 4 Young Won Lim
4/12/18

Equivalence Relation Definition

A given binary relation ~ on a set X
is said to be an equivalence relation
if and only if it is reflexive, symmetric and transitive.

That is, for all a, b and c in X:

 a ~ a. (Reflexivity)
 a ~ b if and only if b ~ a. (Symmetry)
 if a ~ b and b ~ c then a ~ c. (Transitivity)

X together with the relation ~ is called a setoid.
The equivalence class of a under ~, denoted [a],
is defined as [a] = { b X a b }∈ ∣ ∼

https://en.wikipedia.org/wiki/Equivalence_relation

Equivalence Relations (4A) 5 Young Won Lim
4/12/18

Congruent Modulo n

for a positive integer n, two numbers a and b are said to be
congruent modulo n, if their difference a − b is an integer multiple of n
(that is, if there is an integer k such that a − b = kn).
This congruence relation is typically considered
when a and b are integers, and is denoted

 a ≡ b (mod n)

(some authors use = instead of ≡)

 a = b mod n // a = b % n

(this generally means that "mod" denotes the modulo operation,
that is, that 0 ≤ a < n).

The number n is called the modulus of the congruence.

https://en.wikipedia.org/wiki/Equivalence_relation

Equivalence Relations (4A) 6 Young Won Lim
4/12/18

Congruent Modulo n : Examples

For example,

 38 ≡ 14 (mod 12)

because 38 − 14 = 24, which is a multiple of 12,
or, equivalently, because both 38 and 14 have
the same remainder 2 when divided by 12.

The same rule holds for negative values:

 −8 ≡ 7 (mod 5)
 2 ≡ −3 (mod 5)
−3 ≡ −8 (mod 5)

https://en.wikipedia.org/wiki/Equivalence_relation

Equivalence Relations (4A) 7 Young Won Lim
4/12/18

Congruent Modulo n : Properties

The congruence relation satisfies all the conditions of an equivalence relation:

 Reflexivity: a ≡ a (mod n)
 Symmetry: a ≡ b (mod n) if and only if b ≡ a (mod n)
 Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)

https://en.wikipedia.org/wiki/Equivalence_relation

Equivalence Relations (4A) 8 Young Won Lim
4/12/18

Equivalence Relation

A = {0,1,2, 3, 4, 5,6, 7, 8}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

Reflexive Relation &
Symmetric Relation &
Transitive Relation

Equivalence Relation

Equivalence Relations (4A) 9 Young Won Lim
4/12/18

Equivalence Class

A = {0,1,2, 3, 4, 5,6, 7, 8}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

(0,0),(0,3),(0,6),
(3,0) ,(3,3) ,(3,6) ,
(6,0),(6,3) ,(6,6)

(1,1) ,(1,4),(1,7),
(4,1),(4,4),(4,7) ,
(7,1) ,(7,4),(7,7)

(2,2),(2,5) ,(2,8) ,
(5,2),(5,5) ,(5,8),
(8,2) ,(8,5) ,(8,8)

0∼0, 0∼3, 0∼6,

3∼0, 3∼3, 3∼6,

6∼0, 6∼3, 6∼6

1∼1, 1∼4, 1∼7,

4∼1, 4∼4, 4∼7,

7∼1, 7∼4, 7∼7

2∼2, 2∼5, 2∼8,

5∼2, 5∼5, 5∼8,

8∼2, 8∼5, 8∼8

[0] = {0, 3, 6} [1] = {1, 4, 7} [2] = {2, 5, 8}

[0] ⊂ A [1] ⊂ A [2] ⊂ A

Equivalence Relations (4A) 10 Young Won Lim
4/12/18

Partitions

A = {0,1,2, 3, 4, 5,6, 7, 8}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

[0] = {0, 3, 6} [1] = {1, 4, 7} [2] = {2, 5, 8}

[0] ⊂ A [1] ⊂ A [2] ⊂ A

[0] = [3] = [6] [1] = [4] = [7] [2] = [5] = [8]

[0] ∩ [1] = ∅ [1] ∩ [2] = ∅ [2] ∩ [0] = ∅

[0] ∪ [1]∪ [2] = {0, 3, 6}∪ {1, 4, 7}∪ {2, 5, 8} = {0,1,2,3,4,5,6,7,8} = A

Equivalence Relations (4A) 11 Young Won Lim
4/12/18

Equivalence Relation Examples

0

36

A = {0,1,2, 3, 4, 5,6, 7,8}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

1

47

2

58

0 1 2 3

RR = [
1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

]
4 5 6

0

1

2

3

4

5

6

7 8

7

8

Equivalence Relations (4A) 12 Young Won Lim
4/12/18

Equivalence Classes

0

36

1

47

2

58

[1 1 1

1 1 1

1 1 1
] [1 1 1

1 1 1

1 1 1
] [1 1 1

1 1 1

1 1 1
]

Class #1 Class #2 Class #3

0 3 6

0

3

6

1 4 7

1

4

7

2 5 8

2

5

8

P
1

= {0,3,6} P2 = {1, 4,7} P3 = {2,5, 8}partition partition partition

Equivalence Relations (4A) 13 Young Won Lim
4/12/18

Equivalence Class

A = Z
+ = {0,1,2,3, 4,5, 6,⋯}

R ⊂ A×A

R = {(a ,b)∣a ≡ b (mod 3)}

{0, 3, 6, 9, ⋯ }

{1, 4, 7, 10, ⋯ }

{2, 5, 8, 11, ⋯ }

[0]

[1]

[2]

[33]

[331]

[3332]

https://www.cse.iitb.ac.in/~nutan/courses/cs207-12/notes/lec7.pdf

Young Won Lim
4/12/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/12/18

Partial Oder Relations (5A)

Young Won Lim
4/12/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Partial Order Relations (5A) 3 Young Won Lim
4/12/18

Equivalence Relation

A (non-strict) partial order is a binary relation ≤ over a set P
satisfying particular axioms.
When a ≤ b, we say that a is related to b.
(This does not imply that b is also related to a,
because the relation need not be symmetric.)

That is, for all a, b, and c in P, it must satisfy:

 a ≤ a (reflexivity)
 if a ≤ b and b ≤ a, then a = b (antisymmetry)
 if a ≤ b and b ≤ c, then a ≤ c (transitivity)

https://en.wikipedia.org/wiki/Hasse_diagram

Partial Order Relations (5A) 4 Young Won Lim
4/12/18

Equivalence Relation

The axioms for a non-strict partial order state that the relation ≤ is

reflexive: every element is related to itself.

antisymmetric: two distinct elements cannot be related in both directions

transitive: if a first element is related to a second element,
and, in turn, that element is related to a third element,
then the first element is related to the third element

https://en.wikipedia.org/wiki/Hasse_diagram

Partial Order Relations (5A) 5 Young Won Lim
4/12/18

Relation Examples (1)

https://en.wikipedia.org/wiki/Cartesian_product

(1,1)

(2,1) (2,2)

1

2

3

4

5

1 2 3 4 5

(3,1) (3,2) (3,3)

(4,1) (4,2) (4,3) (4,4)

(5,1) (5,2) (5,3) (5,4) (5,5)

x ≥ y x > y

(2,1)

1

2

3

4

5

1 2 3 4 5

(3,1) (3,2)

(4,1) (4,2) (4,3)

(5,1) (5,2) (5,3) (5,4)

Partial Order Relations (5A) 6 Young Won Lim
4/12/18

Equivalence Relation

Reflexive Relation &
Anti-Symmetric Relation &
Transitive Relation

Equivalence Relation

Young Won Lim
4/12/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/5/18

Algorithms – Bubble Sort (1B)

Young Won Lim
4/5/18

 Copyright (c) 2017 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Algorithms – Bubble Sort (1B) 3 Young Won Lim
4/5/18

Bubble Sort Algorithm

procedure bubblesort(a
1
, … , a

n
: real numbers with n ≥ 2)

for i := 1 to n-1

for j := 1 to n – i

if a
j
 > a

j+1
 then interchange a

j
 and a

j+1

{a
1
, …, a

n
 is in increasing order}

Algorithms – Bubble Sort (1B) 4 Young Won Lim
4/5/18

Nested loop iterations

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

Algorithms – Bubble Sort (1B) 5 Young Won Lim
4/5/18

Input and Ouput

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

44

55

22

88

66

11

77

33

a
1
, … , a

n
 : real numbers

with n ≥ 2

11

22

33

44

55

66

77

88

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

{a
1
, …, a

n
 is in increasing order}

Algorithms – Bubble Sort (1B) 6 Young Won Lim
4/5/18

Step i=1

55

22

88

66

11

77

33

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

44

22

88

66

11

77

33

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

44

22

88

66

11

77

33

44

22

55

66

11

77

33

44

22

55

66

11

77

33

44

22

55

66

11

77

33

44

22

55

66

11

77

33

44

22

55

66

11

77

33

88

44

55

55

88

88

88

88

Algorithms – Bubble Sort (1B) 7 Young Won Lim
4/5/18

Step i=2

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

22

55

66

11

77

33

88

22

55

66

11

77

33

88

22

44

66

11

77

33

88

22

44

55

11

77

33

88

22

44

55

11

77

33

88

22

44

55

11

66

33

88

22

44

55

11

66

33

77

88

44

44

55

66

66

77

Algorithms – Bubble Sort (1B) 8 Young Won Lim
4/5/18

Step i=3

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

33

44

55

11

66

77

88

33

22

55

11

66

77

88

33

22

44

11

66

77

88

33

22

44

11

66

77

88

33

22

44

11

55

77

88

66

22

44

11

55

33

77

88

22

44

55

55

66

Algorithms – Bubble Sort (1B) 9 Young Won Lim
4/5/18

Step i=4

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

66

44

11

55

33

77

88

66

22

11

55

33

77

88

66

22

11

55

33

77

88

66

22

11

44

33

77

88

66

22

11

44

33

55

77

88

22

44

44

55

Algorithms – Bubble Sort (1B) 10 Young Won Lim
4/5/18

Step i=5

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

66

11

44

33

55

77

88

66

11

44

33

55

77

88

66

11

22

33

55

77

88

66

11

22

33

44

55

77

88

22

22

44

Algorithms – Bubble Sort (1B) 11 Young Won Lim
4/5/18

Step i=6

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

66

22

33

44

55

77

88

66

11

33

44

55

77

88

66

11

22

33

44

55

77

88

11

22

Algorithms – Bubble Sort (1B) 12 Young Won Lim
4/5/18

Step i=7

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

66

11

22

33

44

55

77

88

66

11

22

33

44

55

77

88

Algorithms – Bubble Sort (1B) 13 Young Won Lim
4/5/18

Summary

j=1

j=2

j=3

j=4

j=5

j=6

j=7

j=8

for i := 1 to n-1

for j := 1 to n – i

if a
j
> a

j+1
 then interchange a

j
 and a

j+1

44

22

55

66

11

77

33

88

22

44

55

11

66

33

77

88

66

22

44

11

55

33

77

88

66

22

11

44

33

55

77

88

66

11

22

33

44

55

77

88

66

11

22

33

44

55

77

88

66

11

22

33

44

55

77

88

i=1 i=2 i=3 i=4 i=5 i=6 i=7

55

22

88

66

11

77

33

44

Young Won Lim
4/5/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/13/18

Algorithms – Insertion Sort (1C)

Young Won Lim
4/13/18

 Copyright (c) 2017 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Algorithms – Insertion Sort (1C) 3 Young Won Lim
4/13/18

Insertion Sort Algorithm

procedure insertion sort(a
1
, … , a

n
: real numbers with n ≥ 2)

for j := 2 to n

 i := 1

while a
j
 > a

i

i := i + 1

m := a
j

for k := 0 to j– i–1

a
j-k

 = a
j-k-1

a
i
 := m

{a
1
, …, a

n
 is in increasing order}

Algorithms – Insertion Sort (1C) 4 Young Won Lim
4/13/18

Nested loop k – constraints

for k := 0 to j– i–1

a
j-k

 = a
j-k-1

a j−k = a j−k−1

a j−0
= a j−0−1

a j−1
= a j−1−1

a j−2
= a j−2−1

a j−(j−i−1) = a j−(j−i−1)−1

⋮ = ⋮

a j = a j−1

a j−1
= a j−2

a j−2
= a j−3

ai+1
= ai

⋮ = ⋮

j−i−1≥0 j≥i+1 i≤ j−1 i< j

(k=0)

(k=1)

(k=2)

(k= j−i−1)

in
c
re

a
s
in

g
in

d
e

x

Algorithms – Insertion Sort (1C) 5 Young Won Lim
4/13/18

Nested loop k – rearranging for understanding

for k := 0 to j– i–1

a
j-k

 = a
j-k-1

a j−k = a j−k−1

a j = a j−1

a j−1
= a j−2

a j−2
= a j−3

ai+1
= ai

⋮ = ⋮

j−i−1≥0 j≥i+1 i≤ j−1 i< j

ai+1
= ai

⋮ = ⋮
a j−2

= a j−3

a j−1
= a j−2

a j = a j−1
(k=0)

(k=1)

(k=2)

(k= j−i−1)

in
c
re

a
s
in

g
in

d
e

x

e
x
e

c
u
tio

n
 o

rd
e

r

Algorithms – Insertion Sort (1C) 6 Young Won Lim
4/13/18

Nested loop k – data movement

m := a
j

for k := 0 to j– i–1

a
j-k

 = a
j-k-1

a
i
 := m

i< j

ai

⋮
a j−3

a j−2

a j−1

ai+1

⋮
a j−2

a j−1

a ja j

aiin
c
re

a
s
in

g
 in

d
e
x

before after
e
x
e
c
u

tio
n

 o
rd

e
r

(k=0)

(k=1)

(k=2)

(k= j−i−1)

Algorithms – Insertion Sort (1C) 7 Young Won Lim
4/13/18

Nested loop i – finding out of order a
i

i := 1

while a
j
 > a

i

i := i + 1

If a
i
 < a

j
 increment I

If a
i
 >= a

j
 break the loop

a
i
is the 1st one that is greater than a

j

ai

⋮
a j−3

a j−2

a j−1

ai+1

⋮
a j−2

a j−1

a ja j

ai

a
1

a
1

a
2

a
2

Algorithms – Insertion Sort (1C) 8 Young Won Lim
4/13/18

Nested loop i – inserting a
i
at the correct position

ai

⋮
a j−3

a j−2

a j−1

ai+1

⋮
a j−2

a j−1

a ja j

ai

a
1

a
1

a
2

a
2

ai

⋮
a j−3

a j−2

a j−1

a j

a
1

a
2

< a j

< a j

< a j

≥ a j

< a j

⋮
⋮

Algorithms – Insertion Sort (1C) 9 Young Won Lim
4/13/18

Nested loop iterations

j=2 j=3 j=4 j=5 j=6 j=7 j=8

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

for j := 2 to n

i := 1

while a
j
 > a

i

i := i + 1

m := a
j

for k := 0 to j– i–1

a
j-k

 = a
j-k-1

a
i
 := m

a
2

a
3

a
4

a
5

a
6

a
7

a
8

Algorithms – Insertion Sort (1C) 10 Young Won Lim
4/13/18

Step j=2

55

22

88

66

11

77

33

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

44

55

22

88

66

11

77

33

44

Algorithms – Insertion Sort (1C) 11 Young Won Lim
4/13/18

Step j=3

55

22

88

66

11

77

33

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

44

44

55

88

66

11

77

33

22

Algorithms – Insertion Sort (1C) 12 Young Won Lim
4/13/18

Step j=4

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

44

55

88

66

11

77

33

22

44

55

88

66

11

77

33

22

Algorithms – Insertion Sort (1C) 13 Young Won Lim
4/13/18

Step j=5

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

44

55

88

66

11

77

33

22

44

55

66

88

11

77

33

22

Algorithms – Insertion Sort (1C) 14 Young Won Lim
4/13/18

Step j=6

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

44

55

66

88

11

77

33

22

22

44

55

66

88

77

33

11

Algorithms – Insertion Sort (1C) 15 Young Won Lim
4/13/18

Step j=7

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

22

44

55

66

88

77

33

11

22

44

55

66

77

88

33

11

Algorithms – Insertion Sort (1C) 16 Young Won Lim
4/13/18

Step j=8

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

22

44

55

66

77

88

33

11

22

33

44

55

66

77

88

11

Algorithms – Insertion Sort (1C) 17 Young Won Lim
4/13/18

Nested loop iterations

Young Won Lim
4/13/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/13/18

Algorithms – Binary Search (1D)

Young Won Lim
4/13/18

 Copyright (c) 2017 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

The Complexity of
Algorithms (3A)

3 Young Won Lim
4/13/18

O(n) vs. O(log n)

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

Algorithms – Binary Search (1D) 4 Young Won Lim
4/13/18

Linear Search Algorithm

procedure linear search(x : integer, a
1
, … , a

n
: distinct integers)

i := 1

while (i ≤ n and x ≠ a
i
)

 i := i + 1

if (i ≤ n) then location := i

else location := 0

return location

{location is the subscript of the term that equals x, or is 0 if x is not found}

The Complexity of
Algorithms (3A)

5 Young Won Lim
4/13/18

i=1 and i=2

a
16

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13

a
14

a
15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x

a
16

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13

a
14

a
15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x

?

?

The Complexity of
Algorithms (3A)

6 Young Won Lim
4/13/18

Best and Worst Cases

a
16x a

2
a

3
a

4
a

5
a

6
a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xa
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13

a
14

a
15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Algorithms – Binary Search (1D) 7 Young Won Lim
4/13/18

Binary Search Algorithm

procedure binary search(x : integer, a
1
, … , a

n
 : increasing integers)

i := 1 { i is left endpoint of search interval }

j := n { j is right endpoint of search interval }

while (i < j)

 m := floor((i+j)/2)

if (x > a
m
) then i := m + 1

else j := m

if (x = a
i
) then location := I

else location := 0

return location

{location is the subscript of the term that equals x, or is 0 if x is not found}

The Complexity of
Algorithms (3A)

8 Young Won Lim
4/13/18

Increasing Order Assumption

a
16

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13

a
14

a
15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a
16

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13

a
14

a
15≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

The Complexity of
Algorithms (3A)

9 Young Won Lim
4/13/18

i=1

a
16

a
1

a
2

a
3

a
4

a
5 x a

7
a

m
a

9
a

10
a

11
a

12
a

13
a

14
a

15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ji m :=floor((1+16)/2)

x

?

(x < a
m
)

a
16

a
1

a
2

a
3

a
4

a
5 x a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

ji

The Complexity of
Algorithms (3A)

10 Young Won Lim
4/13/18

i=2

a
16

a
1

a
2

a
3

a
m

a
5 x a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ji m

x

?

(x > a
m
)

a
16

a
1

a
2

a
3

a
4

a
5 x a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

ji

m :=floor((1+8)/2)

The Complexity of
Algorithms (3A)

11 Young Won Lim
4/13/18

i=3

a
16

a
1

a
2

a
3

a
4

a
5 x a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ji m

x

?

(x = a
m
)

m :=floor((4+8)/2)

The Complexity of
Algorithms (3A)

12 Young Won Lim
4/13/18

Best and Worst Cases

a
16

a
1

a
2

a
3

a
4

a
5

a
6

a
7 x a

9
a

10
a

11
a

12
a

13
a

14
a

15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ji m :=floor((1+16)/2)

a
16

a
1

a
2

a
3

a
4 x a

6
a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

m :=floor((1+16)/2)

The Complexity of
Algorithms (3A)

13 Young Won Lim
4/13/18

Increasing Order

a
16

a
1

a
2

a
3

a
4

a
5 x a

7
a

8
a

9
a

10
a

11
a

12
a

13
a

14
a

15

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ji

Young Won Lim
4/13/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/6/18

The Complexity of Algorithms (3A)

Young Won Lim
4/6/18

 Copyright (c) 2015 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

The Complexity of
Algorithms (3A)

3 Young Won Lim
4/6/18

Complexity Analysis

https://discrete.gr/complexity/

● to compare algorithms at the idea level

ignoring the low level details

● To measure how fast a program is

● To explain how an algorithm behaves

as the input grows larger

The Complexity of
Algorithms (3A)

4 Young Won Lim
4/6/18

Counting Instructions

https://discrete.gr/complexity/

● Assigning a value to a variable

● Accessing a value of a particular array element

● Comparing two values

● Incrementing a value

● Basic arithmetic operations

● Branching is not counted

x= 100;

A[i]

(x > y)

i++

+, –, *, /

if else

The Complexity of
Algorithms (3A)

5 Young Won Lim
4/6/18

Asymptotic Behavior

https://discrete.gr/complexity/

● avoiding tedious instruction counting

● eliminate all the minor details

● focusing how algorithms behaves when treated badly

● drop all the terms that grow slowly

● only keep the ones that grow fast as n becomes larger

The Complexity of
Algorithms (3A)

6 Young Won Lim
4/6/18

Finding the Maximum

https://discrete.gr/complexity/

M = A[0];

for (i=0; i<n; ++i) {

if (A[i] >= M) {

M = A[i];

}

}

int A[n]; // n element integer array A

int M; // the current maximum value found so far

// set to the 1st element, initially

// M is set to the 1st element

// if the (i+1)th element is greater than M,

// M is set to that element (new maximum value)

The Complexity of
Algorithms (3A)

7 Young Won Lim
4/6/18

Worst and Best Cases

https://discrete.gr/complexity/

A[0]

A[1]

A[2]

A[3]

i=0

i=1

i=2

i=3

int A[4];

A[0]=1

A[1]=2

A[2]=3

A[3]=4

Case 1:
Worst Case

A[0]=4

A[1]=3

A[2]=2

A[3]=1

Case 2:
Best Case

M=1

M=2

M=3

M=4

M=4

for (i=0; i<n; ++i) {

if (A[i] >= M) { // always n comparisons

M = A[i]; // the updating of M depends on the data

} // minimum 1 update, maximum n updates

The Complexity of
Algorithms (3A)

8 Young Won Lim
4/6/18

Assignment

https://discrete.gr/complexity/

M = A[0]; // 2 instructions

for (i=0; i<n; ++i) {

if (A[i] >= M) {

M = A[i];

}

}

A[0] – 1 instruction

M = – 1 instruction

The Complexity of
Algorithms (3A)

9 Young Won Lim
4/6/18

Loop instructions

https://discrete.gr/complexity/

for (i=0; i<n; ++i) {

if (A[i] >= M) {

M = A[i];

}

Initialization * 1

i=0 : 1 instruction

i<n : 1 instruction

Update * n

++i : 1 instruction

i<n : 1 instruction

Loop body * n

A[i] : 1 instruction

>= M : 1 instruction

A[i] : 1 instruction

M= : 1 instruction

n

1 ~ n

always

depending on the
comparison

The Complexity of
Algorithms (3A)

10 Young Won Lim
4/6/18

Worst case examples

https://discrete.gr/complexity/

A[0]=1

A[1]=2

A[2]=3

A[3]=4

>= M=1

for (i=0; i<n; ++i) {

if (A[i] >= M) {

M = A[i];

}

 M=1

A[0]=1

A[1]=2

A[2]=3

A[3]=4

>= M=1

 M=2

A[0]=1

A[1]=2

A[2]=3

A[3]=4

>= M=2

 M=3

A[0]=1

A[1]=2

A[2]=3

A[3]=4 >= M=2

 M=3

i=0 i=1

i=2 i=3
2n + 2n = 4n

Instructions

n comparisons

n updates

The Complexity of
Algorithms (3A)

11 Young Won Lim
4/6/18

Best case examples

https://discrete.gr/complexity/

A[0]=4

A[1]=3

A[2]=2

A[3]=1

>= M=4

for (i=0; i<n; ++i) {

if (A[i] >= M) {

M = A[i];

}

 M=4

A[0]=4

A[1]=3

A[2]=2

A[3]=1

< M=4

A[0]=4

A[1]=3

A[2]=2

A[3]=1

< M=4

A[0]=4

A[1]=3

A[2]=2

A[3]=1 < M=4

i=0 i=1

i=2 i=3
2n + 2

Instructions

n comparisons

1 update

The Complexity of
Algorithms (3A)

12 Young Won Lim
4/6/18

Asymptotic behavior

https://discrete.gr/complexity/

M = A[0];

for (i=0; i<n; ++i) {

if (A[i] >= M) {

M = A[i];

}

}

2 instructions

2 + 2n instructions (init + update)

2n instructions

2 ~ 2n instructions

6n+4 instructions for the worst case

4n+6 instruction for the best case
f(n) =

f(n) = O(n)

f(n) = Ω(n)

f(n) = Θ(n)

The Complexity of
Algorithms (3A)

13 Young Won Lim
4/6/18

O(n) codes

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

// Here c is a positive integer constant

for (i = 1; i <= n; i += c) {

 // some O(1) expressions

}

for (int i = n; i > 0; i -= c) {

 // some O(1) expressions

}

The Complexity of
Algorithms (3A)

14 Young Won Lim
4/6/18

O(n2) codes

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

for (i = 1; i <=n; i += c) {

 for (j = 1; j <=n; j += c) {

 // some O(1) expressions

 }

}

for (i = n; i > 0; i += c) {

for (j = i+1; j <=n; j += c) {

 // some O(1) expressions

}

The Complexity of
Algorithms (3A)

15 Young Won Lim
4/6/18

O(log n) codes

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

for (int i = 1; i <=n; i *= c) {

 // some O(1) expressions

}

for (int i = n; i > 0; i /= c) {

// some O(1) expressions

}

The Complexity of
Algorithms (3A)

16 Young Won Lim
4/6/18

O(n) vs. O(log n)

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

The Complexity of
Algorithms (3A)

17 Young Won Lim
4/6/18

O(log n) codes

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

// Here c is a constant greater than 1

for (int i = 2; i <=n; i = pow(i, c)) { // i = i^c

 // some O(1) expressions

}

//Here fun is sqrt or cuberoot or any other constant root

for (int i = n; i > 0; i = fun(i)) { // i = i^(1/c)

 // some O(1) expressions

}

i = i
2
, i = i

3

The Complexity of
Algorithms (3A)

18 Young Won Lim
4/6/18

O(log log n) codes

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

// Here c is a constant greater than 1

for (int i = 2; i <=n; i = pow(i, c)) { // i = i^c

 // some O(1) expressions

}

//Here fun is sqrt or cuberoot or any other constant root

for (int i = n; i > 0; i = fun(i)) { // i = i^(1/c)

 // some O(1) expressions

}

i = i
2 (2,22

,2
4
,2

8
,2

16
,⋯)

i = i
1

2 (n ,n
1

2 , n
1

4 , n
1

8 , n
1

16 ,⋯)

The Complexity of
Algorithms (3A)

19 Young Won Lim
4/6/18

O(log log n) codes

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

// Here c is a constant greater than 1

for (int i = 2; i <=n; i = pow(i, c)) { // i = i^c

 // some O(1) expressions

}

//Here fun is sqrt or cuberoot or any other constant root

for (int i = n; i > 0; i = fun(i)) { // i = i^(1/c)

 // some O(1) expressions

}

i = i
2 (2,22

,2
4
,2

8
,2

16
,⋯)

i = i
1

2 (n ,n
1

2 , n
1

4 , n
1

8 , n
1

16 ,⋯)

The Complexity of
Algorithms (3A)

20 Young Won Lim
4/6/18

Some Algorithm Complexities and Examples (1)

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

O(1) – Constant Time

not affected by the input size n.

O(n) – Linear Time

Proportional to the input size n.

O(log n) – Logarithmic Time

recursive subdivisions of a problem

binary search algorithm

O(n log n) – Linearithmic Time

Recursive subdivisions of a problem and then merge them

merge sort algorithm.

The Complexity of
Algorithms (3A)

21 Young Won Lim
4/6/18

Some Algorithm Complexities and Examples (2)

https://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

O(n2) – Quadratic Time

bubble sort algorithm

O(n3) – Cubic Time

straight forward matrix multiplication

O(2^n) – Exponential Time

Tower of Hanoi

O(n!) – Factorial Time

Travel Salesman Problem (TSP)

Young Won Lim
4/6/18

References

[1] http://en.wikipedia.org/
[2]

