Monad P3: Lambda Calculus (1F)

Copyright (c) 2022 - 2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Lambda Calculus

CFG for Lambda Calculus (1)

The central concept in the **lambda calculus** is an **expression** which we can think of <u>as a program</u> that <u>returns</u> a <u>result</u> when <u>evaluated</u> consisting of *another* **lambda calculus expression**.

Here is the grammar for lambda expressions:

expr $\rightarrow \lambda$ variable . expr | expr expr | variable | (expr) | constant

CFG for Lambda Calculus (2)

```
expr \rightarrow \lambda variable . expr | expr expr | variable | (expr) | constant
```

A variable is an identifier.

A **constant** is a <u>built-in function</u> such as *addition* or *multiplication*, or a <u>constant</u> such as an *integer* or *boolean*.

all programming language constructs

can be represented as **functions** with the <u>pure</u> **lambda calculus**

so these **constants** are <u>unnecessary</u>.

However, some constants may be used for notational simplicity.

Lambda calculus (3) – function abstraction

A function abstraction, often called a lambda abstraction, is a lambda expression that <u>defines</u> a function.

A function abstraction consists of *four parts*:
 a lambda followed by a variable, a period,
 and then an expression as in λx.expr.

Lambda calculus (4) – function abstraction

```
For example, the function abstraction λx. + x 1 defines a function of x that adds x to 1.
Parentheses can be added to lambda expressions for clarity. Thus, we could have written this function abstraction as λx.(+ x 1) or even as (λx. (+ x 1)).
In C this function definition might be written as int addOne (int x) { return (x + 1); }
```

Lambda calculus (4) – function abstraction

the function abstraction λx . + x 1

C function definition

```
int addOne (int x) {
  return (x + 1); }
```

Note that unlike C the **lambda abstraction** does <u>not</u> give a **name** to the function.

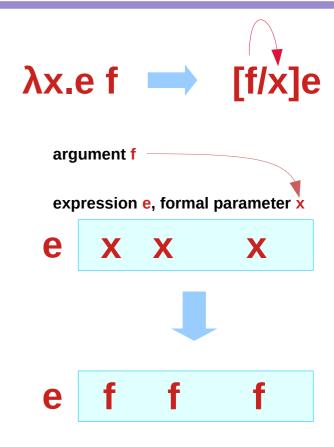
The **lambda expression** itself is the **function**.

We say that $\lambda x.expr$ binds the variable x in expr and that expr is the scope of the variable.

Lambda calculus (5) – function application

A function application $\lambda x.e$ f is <u>evaluated</u>
by substituting the <u>argument f</u>
for *all free occurrences* of the <u>formal parameter x</u>
in the body **e** of the <u>function definition</u>.

We will use the notation **[f/x]e** to indicate that **f** is to be substituted for all free occurrences of **x** in the expression **e**.



Lambda calculus (5) – free and bound variables

In the function definition $\lambda x.x$

the variable x in the body of the definition (the second x) is bound because its first occurrence in the definition is λx .

A variable that is not bound in expr is said to be free in expr.

In the function $(\lambda x.xy)$, the variable x in the body of the function is bound and the variable y is free.

Every variable in a lambda expression is either bound or free. Bound and free variables have quite a different status in functions.

Lambda calculus (5) – free and bound variables

In the expression $(\lambda x.x)(\lambda y.yx)$:

The variable x in the body of the leftmost expression is bound to the first lambda.

The variable y in the body of the second expression is bound to the second lambda.

The variable x in the body of the second expression is free.

Note that x in second expression is independent of the x in the first expression.

In the expression $(\lambda x.xy)(\lambda y.y)$:

The variable y in the body of the leftmost expression is free.

The variable y in the body of the second expression is bound to the second lambda.

Lambda calculus (5) – free and bound variables

Given an expression e, the following rules define FV(e), the set of free variables in e:

If e is a variable x, then $FV(e) = \{x\}$.

If e is of the form $\lambda x.y$, then $FV(e) = FV(y) - \{x\}$.

If e is of the form xy, then $FV(e) = FV(x) \cup FV(y)$.

An expression with no free variables is said to be closed.

Lambda calculus (6) – beta reduction

Examples:

$(\lambda x.x)y \rightarrow [y/x]x = y$

in the express \mathbf{x} , substitute the parameter \mathbf{x} with the argument \mathbf{x}

$(\lambda x.xzx)y \rightarrow [y/x]xzx = yzy$

in the express **xzx**, substitute the parameter **x** with the argument **y**

$(\lambda x.z)y \rightarrow [y/x]z = z$

in the express **z**, substitute the parameter **x** with the argument **y**

since the formal parameter \mathbf{x} does <u>not</u> appear in the body \mathbf{z} .

This **substitution** in a **function application** is called a **beta reduction** and we use a right arrow to indicate it.

 $\lambda x.e f \longrightarrow [f/x]e$

Lambda calculus (7) – beta reduction

If **expr1** \rightarrow **expr2**, we say **expr1** reduces to **expr2** in one step.

In general, $(\lambda x.e)f \rightarrow [f/x]e$ means that

applying the function ($\lambda x.e$) to the argument expression freduces to the expression [f/x]e

where the **argument expression f** is substituted for the function's **formal parameter x** in the **function body e**.

Lambda calculus (8) – beta reduction

A lambda calculus expression (aka a "program") is

"run" by computing a final result

by <u>repeatly</u> <u>applying</u> beta reductions.

We use \rightarrow * to denote the reflexive and transitive closure of \rightarrow ; that is, zero or more applications of beta reductions.

Lambda calculus (9) – beta reduction

Examples:

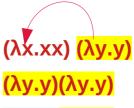
$$(\lambda x.x)y \rightarrow y$$

illustrating that $\lambda x.x$ is the identity function

$$(\lambda x.xx)(\lambda y.y) \rightarrow (\lambda y.y)(\lambda y.y) \rightarrow (\lambda y.y);$$

thus, we can write $(\lambda x.xx)(\lambda y.y) \rightarrow * (\lambda y.y).$

we have <u>applied</u> a **function** to a **function** as an argument and the **result** is a **function**.



 $(\lambda y.y)$

(λy.y)(λy.y) indentity function

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

function argument

Lambda calculus (10) – beta reduction

Examples:

 $(\lambda x.x)y \rightarrow y$ illustrating that $\lambda x.x$ is the identity function

 $(\lambda x.xx)(\lambda y.y) \rightarrow (\lambda y.y)(\lambda y.y) \rightarrow (\lambda y.y);$ thus, we can write $(\lambda x.xx)(\lambda y.y) \rightarrow (\lambda y.y).$

 \rightarrow * to denote the reflexive and transitive closure of \rightarrow that is, zero or more applications of beta reductions

Transitive relation

x R y and y R z then x R z

Reflexive relation

x R x

Evaluation models of a function

Call-by-value:

arguments are evaluated before a function is entered

Call-by-name:

arguments are passed unevaluated

Call-by-need:

arguments are passed <u>unevaluated</u>
but an expression is only <u>evaluated</u> <u>once</u>
and <u>shared</u> upon subsequent references

Comparisons

Call by name is **non**-memoizing **non**-strict evaluation strategy where the **value**(s) of the **argument**(s) need only be found when actually used inside the **function's body**, each time anew:

Call by need is memoizing **non**-strict a.k.a. lazy evaluation strategy where the **value**(s) of the **argument**(s) need only be found when used inside the **function's body** for the first time, and then are available for any further reference:

Call by value is strict evaluation strategy where the **value**(s) of the **argument**(s) must be found before entering the function's body:

Comparisons

Call by need memoizing non-strict Call by value strict	
Call by value strict	

Comparisons

Call by name the value (s) of the argument (s) need only be found when actually used inside the function's body , each time anew:	non-memoizing	non-strict
when actually accumulate the function of body, each time arrow.		
Call by need the value(s) of the argument(s) need only be found	memoizing	non-strict
when used inside the function's body for the first time,		
and then are available for any further reference:		
Call by value the value(s) of the argument(s) must be found		strict
before entering the function's body:		

Memoization / Sharing

Memoization is a technique

for <u>storing</u> **values** of a **function** instead of <u>recomputing</u> them each time the **function** is called.

Sharing means that **temporary data** is physically <u>stored</u>, if it is <u>used multiple times</u>.

https://wiki.haskell.org/Memoization

Strictness

Strict evaluation, or eager evaluation, is an evaluation strategy where **expressions** are <u>evaluated</u>
<u>as soon as</u> they are <u>bound</u> to a **variable**.

when x = 3 * 7 is <u>read</u>, 3 * 7 is immediately <u>computed</u> and 21 is bound to x.

Conversely, with **lazy evaluation values** are only <u>computed</u> when they are <u>needed</u>.

In the example x = 3 * 7, 3 * 7 isn't evaluated until it's needed, like if you needed to output the value of x.

https://en.wikibooks.org/wiki/Haskell/Strictness

https://wiki.haskell.org/Sharing

Laziness

Haskell is a **non-strict** language, and most implementations use a strategy called **laziness** to run your program.

Basically **laziness == non-strictness + sharing**.

Laziness can be a useful tool for improving performance, but more often than <u>not</u> it <u>reduces</u> performance by <u>adding</u> a **constant overhead** to everything.

https://wiki.haskell.org/Performance/Strictness

Laziness

Because of **laziness**, the compiler <u>can't</u> <u>evaluate</u> a function **argument** and <u>pass</u> the **value** to the function,

it has to <u>record</u> the **expression** in the **heap** in a **suspension** (or **thunk**) in case it is <u>evaluated</u> later.

Storing and evaluating **suspensions** is costly, and <u>unnecessary</u> if the **expression** was going to be <u>evaluated</u> <u>anyway</u>.

https://wiki.haskell.org/Performance/Strictness

Call by name

```
\begin{array}{l} h \ x = x : (h \ x) \\ g \ xs = [head \ xs, \ head \ xs - 1] \\ \\ = [let \{xs = (h \ 2)\} \ in \ [head \ xs, \ head \ xs - 1] \\ \\ = [head \ (h \ 2), \qquad \qquad let \{xs = (h \ 2)\} \ in \ head \ xs - 1] \\ \\ = [head \ (let \{x = 2\} \ in \ x : (h \ x)\}), \ let \{xs = (h \ 2)\} \ in \ head \ xs - 1] \\ \\ = [let \{x = 2\} \ in \ x, \qquad let \{xs = (h \ 2)\} \ in \ head \ xs - 1] \\ \\ = [2, \qquad let \{xs = (h \ 2)\} \ in \ head \ xs - 1] \\ \\ = .... \end{array}
```

Call by **need**

```
h \times = \times : (h \times)

g \times = [head \times s, head \times s - 1]

g (h 2) = let \{xs = (h 2)\} in [head \times s, head \times s - 1]

= let \{xs = (2 : (h 2))\} in [head \times s, head \times s - 1]

= let \{xs = (2 : (h 2))\} in [2, head \times s - 1]

= ....
```

Call by value

```
\begin{array}{ll} h \ x = x : (h \ x) \\ g \ xs = [head \ xs, \ head \ xs - 1] \\ \\ g \ (h \ 2) = let \ \{xs = (h \ 2)\} & \text{in [head } xs, \ head } xs - 1] \\ \\ = let \ \{xs = (2 : (h \ 2))\} & \text{in [head } xs, \ head } xs - 1] \\ \\ = let \ \{xs = (2 : (2 : (h \ 2)))\} & \text{in [head } xs, \ head } xs - 1] \\ \\ = let \ \{xs = (2 : (2 : (h \ 2)))\} & \text{in [head } xs, \ head } xs - 1] \\ \\ = .... \end{array}
```

All the above assuming g (h 2) is entered at the GHCi prompt and thus needs to be printed in full by it.

Reductions in the expression **f x**

Given an **expression f** x

Call-by-value: Evaluate **x** to **v**

Evaluate f to $\lambda y.e$

Evaluate [y/v]e

Call-by-name: Evaluate f to $\lambda y.e$

Evaluate [y/x]e

Call-by-need: Allocate a thunk v for x

Evaluate f to $\lambda y.e$

Evaluate [y/v]e

Call by value (1)

Call by value is an extremely common evaluation model.

Many programming languages both imperative and functional use this evaluation strategy.

The essence of **call-by-value** is that

there are two categories of expressions: **terms** and **values**.

Call by value (2)

Values are lambda expressions and other terms which are in **normal form** and cannot be reduced further.

All **arguments** to a **function** will be <u>reduced</u> to **normal form** <u>before</u> they are bound inside the lambda and <u>reduction</u> only proceeds <u>once</u> the **arguments** are reduced.

Call by value (3)

For a simple arithmetic expression, the reduction proceeds as follows. Notice how the subexpression (2 + 2) is evaluated to normal form before being bound.

```
(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5
```

Call by name (1)

In call-by-name evaluation,

the **arguments** to lambda expressions are <u>substituted</u> as is, <u>evaluation</u> simply proceeds <u>from left to right</u> <u>substituting</u> the <u>outermost</u> lambda or <u>reducing</u> a value.

If a substituted expression is <u>not used</u> it is <u>never evaluated</u>.

Call by name (2)

For example, the same expression we looked at for **call-by-value** has the same normal form but arrives at it by a different sequence of reductions:

Call-by-name is non-strict, although very few languages use this model.

Call by **need** (1)

Call-by-need is a special type of non-strict evaluation in which <u>unevaluated</u> **expressions** are <u>represented</u> by **suspensions** or **thunks** which are passed into a **function** <u>unevaluated</u> and <u>only</u> evaluated when needed or forced.

When the **thunk** is forced the **representation** of the **thunk** is <u>updated</u> with the <u>computed</u> **value** and is <u>not recomputed</u> upon further reference.

Call by **need** (2)

The **thunks** for <u>unevaluated</u> lambda expressions are <u>allocated</u> when <u>evaluated</u>, and the resulting <u>computed</u> **value** is placed in <u>the same</u> **reference** so that subsequent **computations** <u>share</u> the result.

If the **argument** is <u>never needed</u> it is <u>never computed</u>, which <u>results</u> in a trade-off between **space** and **time**.

Call by **need** (3)

Since the evaluation of subexpression does not follow any pre-defined order, any impure functions with side-effects will be evaluated in an unspecified order.

As a result call-by-need can only effectively be implemented in a purely functional setting.

Call by value (3)

For a simple arithmetic expression, the reduction proceeds as follows. Notice how the subexpression (2 + 2) is evaluated

to **normal form** before being bound.

References

- [1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
- [2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf