Monad P3 : Lambda Calculus (1F)

Copyright (c) 2022-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Lambda Calculus

CFG for Lambda Calculus (1)

The central concept in the lambda calculus is
an expression which we can think of as a program
that returns a result when evaluated
consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:
expr $\rightarrow \boldsymbol{\lambda}$ variable . expr \| expr expr \| variable \| (expr) | constant

CFG for Lambda Calculus (2)

expr $\rightarrow \boldsymbol{\lambda}$ variable . expr | expr expr \| variable | (expr) | constant

A variable is an identifier.
A constant is a built-in function such as addition or multiplication, or a constant such as an integer or boolean.
all programming language constructs
can be represented as functions
with the pure lambda calculus
so these constants are unnecessary.
However, some constants may be used for notational simplicity.

Lambda calculus (3) - function abstraction

A function abstraction, often called a lambda abstraction, is a lambda expression that defines a function.

A function abstraction consists of four parts:
a lambda followed by a variable, a period, and then an expression as in λx.expr.

Lambda calculus (4) - function abstraction

For example, the function abstraction $\lambda \mathbf{x} .+\mathbf{x} \mathbf{1}$
defines a function of x that adds x to $\mathbf{1}$.

Parentheses can be added to lambda expressions for clarity.
Thus, we could have written this function abstraction
as $\lambda \mathrm{x} .(+\mathrm{x} 1)$ or even as ($\boldsymbol{\lambda} \mathrm{x}$. (+ $\mathrm{x} \mathbf{1}$)).

In C this function definition might be written as

```
int addOne (int x) {
```

return $(x+1) ; \quad\}$

Lambda calculus (4) - function abstraction

the function abstraction $\lambda x .+x 1$
C function definition

```
int addOne (int x) {
    return (x + 1); }
```

Note that unlike C the lambda abstraction does not give a name to the function.
The lambda expression itself is the function.

We say that λ x.expr binds the variable x in expr and that expr is the scope of the variable.

Lambda calculus (5) - function application

A function application $\lambda x . e f$ is evaluated
by substituting the argument f
for all free occurrences of the formal parameter \mathbf{x} in the body \mathbf{e} of the function definition.

We will use the notation [$\mathrm{f} / \mathrm{x}] \mathrm{e}$ to indicate
that \mathbf{f} is to be substituted for all free occurrences of \mathbf{x}
in the expression \mathbf{e}.

$\lambda x . e f$

argument f
expression e, formal parameter x
e X X X
e X X X
effif
http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) - free and bound variables

In the function definition λx. x
the variable x in the body of the definition (the second x)
is bound because its first occurrence in the definition is λx.

A variable that is not bound in expr is said to be free in expr.

In the function ($\lambda x . x y$), the variable x in the body of the function
is bound and the variable y is free.

Every variable in a lambda expression is either bound or free.
Bound and free variables have quite a different status in functions.

Lambda calculus (5) - free and bound variables

In the expression ($\lambda x . x)(\lambda y . y x)$:
The variable x in the body of the leftmost expression is bound to the first lambda.
The variable y in the body of the second expression is bound to the second lambda.
The variable x in the body of the second expression is free.
Note that x in second expression is independent of the x in the first expression.
In the expression ($\lambda x . x y$) ($\lambda y . y$):
The variable y in the body of the leftmost expression is free.
The variable y in the body of the second expression is bound to the second lambda.

Lambda calculus (5) - free and bound variables

Given an expression e, the following rules define $\mathrm{FV}(\mathrm{e})$, the set of free variables in e :
If e is a variable x, then $F V(e)=\{x\}$.
If e is of the form $\lambda x \cdot y$, then $F V(e)=F V(y)-\{x\}$.
If e is of the form $x y$, then $F V(e)=F V(x) \cup F V(y)$.
An expression with no free variables is said to be closed.

Lambda calculus (6) - beta reduction

Examples:

```
\((\lambda x . x) y \rightarrow[y / x] x=y\)
in the express \(x\),
substitute the parameter \(\mathbf{x}\) with the argument \(\mathbf{x}\)
\((\lambda x . x z x) y \rightarrow[y / x] x z x=y z y\)
in the express \(x z x\),
substitute the parameter \(\mathbf{x}\) with the argument \(\mathbf{y}\)
\((\lambda x . z) y \rightarrow[y / x] z=z\)
in the express \(\mathbf{z}\),
substitute the parameter \(\mathbf{x}\) with the argument \(\mathbf{y}\)
since the formal parameter \(\mathbf{x}\) does not appear in the body \(\mathbf{z}\).
\((\lambda x . x) y \rightarrow[y / x] x=y\)
in the express \(\mathbf{x}\),
substitute the parameter \(\mathbf{x}\) with the argument \(\mathbf{x}\)
\((\lambda x . x z x) y \rightarrow[y / x] x z x=y z y\)
in the express \(\mathbf{x z x}\),
substitute the parameter \(x\) with the argument \(y\)
\((\lambda x . z) y \rightarrow[y / x] z=z\)
in the express \(\mathbf{z}\),
substitute the parameter \(\mathbf{x}\) with the argument \(\mathbf{y}\)
since the formal parameter \(\mathbf{x}\) does not appear in the body \(\mathbf{z}\).
```

This substitution in a function application is called
a beta reduction and we use a right arrow to indicate it.

$\lambda x . e f$

Lambda calculus (7) - beta reduction

If expr1 \rightarrow expr2, we say expr1 reduces to expr2 in one step.

$\lambda x . e f$

[f/x]e
In general, (λ x.e) $\rightarrow[f / x] e$ means that
applying the function ($\boldsymbol{\lambda} \times . e$) to the argument expression f reduces to the expression [f/x]e
where the argument expression f is substituted
for the function's formal parameter \mathbf{x} in the function body \mathbf{e}.

Lambda calculus (8) - beta reduction

A lambda calculus expression (aka a "program") is
"run" by computing a final result
by repeatly applying beta reductions.

We use \rightarrow * to denote the reflexive and transitive closure of \rightarrow; that is, zero or more applications of beta reductions.

Lambda calculus (9) - beta reduction

Examples:

($\lambda \mathrm{x} . \mathrm{x}) \mathrm{y} \rightarrow \mathrm{y}$
illustrating that $\lambda x . x$ is the identity function
$(\lambda x . x x)(\lambda y . y) \rightarrow(\lambda y . y)(\lambda y . y) \rightarrow(\lambda y . y) ;$
thus, we can write $(\lambda x \cdot x x)(\lambda y \cdot y) \rightarrow *(\lambda y \cdot y)$.
we have applied a function to a function
as an argument and the result is a function.

$\lambda \grave{x} . \mathrm{ef}$

$(\lambda x . x x)(\lambda y . y) \quad$ function argument
($\lambda y . y)(\lambda y . y)$
$(\lambda y \cdot y)(\lambda y \cdot y) \quad$ indentity function
($\lambda \mathrm{y} . \mathrm{y})$

Lambda calculus (10) - beta reduction

Examples:

$$
(\lambda x . x) y \rightarrow y
$$

illustrating that $\boldsymbol{\lambda x} . \mathrm{x}$ is the identity function
$(\lambda x . x x)(\lambda y . y) \rightarrow(\lambda y . y)(\lambda y . y) \rightarrow(\lambda y . y) ;$
thus, we can write $(\lambda x . x x)(\lambda y \cdot y) \rightarrow *(\lambda y \cdot y)$.
\rightarrow * to denote the reflexive and transitive closure of \rightarrow
that is, zero or more applications of beta reductions

Transitive relation
$\mathbf{x} \mathbf{R y}$ and $\mathbf{y} \mathbf{R z}$ then $\mathbf{x} \mathbf{R z}$

Reflexive relation
x R x

Evaluation models of a function

Call-by-value:

arguments are evaluated before a function is entered

Call-by-name:
arguments are passed unevaluated

Call-by-need:
arguments are passed unevaluated
but an expression is only evaluated once
and shared upon subsequent references

Comparisons

Call by name is non-memoizing non-strict evaluation strategy where the value(s) of the argument(s) need only be found when actually used inside the function's body, each time anew:

Call by need is memoizing non-strict a.k.a. lazy evaluation strategy where the value(s) of the argument(s) need only be found when used inside the function's body for the first time, and then are available for any further reference:

Call by value is strict evaluation strategy where the value(s) of the argument(s) must be found before entering the function's body:

Comparisons

Call by name	non-memoizing	non-strict
Call by need	memoizing	non-strict
Call by value		strict

Comparisons

Call by name the value(s) of the argument(s) need only be found non-memoizing non-strict when actually used inside the function's body, each time anew:

Call by need the value(s) of the argument(s) need only be found memoizing non-strict when used inside the function's body for the first time, and then are available for any further reference:

Call by value the value(s) of the argument(s) must be found
before entering the function's body:

Memoization / Sharing

Memoization is a technique
for storing values of a function
instead of recomputing them
each time the function is called.

Sharing means that temporary data is physically stored,
if it is used multiple times.

Strictness

Strict evaluation, or eager evaluation, is an evaluation strategy
where expressions are evaluated
as soon as they are bound to a variable.
when $x=3$ * 7 is read, 3 * 7 is immediately computed
and 21 is bound to \mathbf{x}.

Conversely, with lazy evaluation
values are only computed when they are needed.

In the example $x=3 * 7,3 * 7$ isn't evaluated until it's needed,
like if you needed to output the value of \mathbf{x}.

Laziness

Haskell is a non-strict language, and most implementations
use a strategy called laziness to run your program.
Basically laziness == non-strictness + sharing.

Laziness can be a useful tool for improving performance,
but more often than not it reduces performance
by adding a constant overhead to everything.

Laziness

Because of laziness, the compiler can't
evaluate a function argument
and pass the value to the function,
it has to record the expression
in the heap in a suspension (or thunk)
in case it is evaluated later.

Storing and evaluating suspensions is costly, and unnecessary
if the expression was going to be evaluated anyway.

Call by name

```
h x = x: (h x)
g xs = [head xs, head xs - 1]
g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]
    = [let {xs = (h 2)} in head xs, let {xs = (h 2)} in head xs - 1]
    = [head (h 2), let {xs = (h 2)} in head xs - 1]
    = [head (let {x = 2} in x : (h x)}), let {xs = (h 2)} in head xs - 1]
    =[let {x=2} in x, let {xs=(h 2)} in head xs - 1]
    = [2, let {xs = (h 2)} in head xs - 1]
    = ...
```


Call by need

```
hx = x: (h x)
g xs = [head xs, head xs - 1]
g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]
    = let {xs = (2: (h 2))} in [head xs, head xs - 1]
    = let {xs = (2: (h 2))} in [2, head xs - 1]
    = ...
```


Call by value

```
h x = x : (h x)
g xs = [head xs, head xs - 1]
g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]
    = let {xs = (2: (h 2))} in [head xs, head xs - 1]
    = let {xs = (2 : (2 : (h 2)))} in [head xs, head xs - 1]
    = let {xs = (2:(2:(2:(h 2))))} in [head xs, head xs - 1]
    = ...
```

All the above assuming $g(h 2)$ is entered at the GHCi prompt and thus needs to be printed in full by it.

Reductions in the expression $\mathbf{f} \mathbf{x}$

Given an expression $\mathbf{f} x$
Call-by-value: Evaluate x to v
Evaluate \mathbf{f} to $\lambda \mathbf{\lambda} . \mathrm{e}$
Evaluate [y/v]e
Call-by-name: Evaluate \mathbf{f} to λ y.e
Evaluate [y/x]e
Call-by-need: Allocate a thunk v for x
Evaluate \mathbf{f} to $\lambda \mathrm{y} . \mathrm{e}$
Evaluate [y/v]e

Call by value (1)

Call by value is an extremely common evaluation model.
Many programming languages both imperative and functional use this evaluation strategy.

The essence of call-by-value is that
there are two categories of expressions: terms and values.

Call by value (2)

Values are lambda expressions and other terms which are in normal form and cannot be reduced further.

All arguments to a function will be reduced to normal form
before they are bound inside the lambda and
reduction only proceeds once the arguments are reduced.
http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)

For a simple arithmetic expression, the reduction proceeds as follows.
Notice how the subexpression $(2+2)$ is evaluated to normal form before being bound.
(lx. ly. y x) ($2+2$) (lx. $x+1$)
$=>$ (lx. ly. y x) 4 (lx. x + 1)
=> (ly. y 4) (lx. x + 1)
$=>(1 x . x+1) 4$
=> 4 + 1
=> 5
http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (1)

In call-by-name evaluation,
the arguments to lambda expressions are substituted as is, evaluation simply proceeds from left to right
substituting the outermost lambda or reducing a value.

If a substituted expression is not used it is never evaluated.

Call by name (2)

For example, the same expression we looked at for call-by-value has the same normal form but arrives at it
by a different sequence of reductions:
(lx. ly. y x) (2 + 2) (lx. x + 1)
=> (ly. y (2 + 2)) (lx. x + 1)
$=>(1 x . x+1)(2+2)$
=> $(2+2)+1$
=> 4 + 1
=> 5

Call-by-name is non-strict, although very few languages use this model.

Call by need (1)

Call-by-need is a special type of non-strict evaluation
in which unevaluated expressions are represented
by suspensions or thunks which are passed
into a function unevaluated and
only evaluated when needed or forced.

When the thunk is forced
the representation of the thunk is updated
with the computed value
and is not recomputed upon further reference.
http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (2)

The thunks for unevaluated lambda expressions
are allocated when evaluated,
and the resulting computed value
is placed in the same reference
so that subsequent computations share the result.

If the argument is never needed
it is never computed,
which results in a trade-off
between space and time.
http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (3)

Since the evaluation of subexpression does not follow any pre-defined order, any impure functions with side-effects will be evaluated in an unspecified order.

As a result call-by-need can only effectively
be implemented in a purely functional setting.

Call by value (3)

For a simple arithmetic expression, the reduction proceeds as follows.

Notice how the subexpression $(2+2)$ is evaluated to normal form before being bound.
(lx. ly. y x) (2 + 2) (lx. $x+1$)
=> (lx. ly. y x) 4 (lx. x + 1)
=> (ly. y 4) (lx. x + 1)
$=>(\mid x . x+1) 4$
=> $4+1$
=> 5

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

