d_cp2.6

The LaTex code that creates this quiz is released to the Public Domain Attribution for each question is documented in the Appendix

Friday $26^{\text {th }}$ October, 2018

Latex markup at https://en.wikiversity.org/wiki/special:permalink/1894335

1.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=3 \mathrm{~m}$. The surfaces in the yz plane each have area $8 \mathrm{~m}^{2}$. Those in the xy plane have area $12 \mathrm{~m}^{2}$, and those in the zx plane have area $6 \mathrm{~m}^{2}$. An electric field of magnitude $10 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 30° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane? ${ }^{1}$
A. $3.549 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.904 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.294 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.724 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.196 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
2.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=3 m$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=3 \mathrm{~m}$. The surfaces in the yz plane each have area $8 \mathrm{~m}^{2}$. Those in the xy plane have area $12 \mathrm{~m}^{2}$, and those in the zx plane have area $6 \mathrm{~m}^{2}$. An electric field of magnitude $10 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 60° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane? ${ }^{2}$
A. $4.724 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.196 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.716 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.287 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.916 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=3 m$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=3 \mathrm{~m}$. The surfaces in the yz plane each have area $8 \mathrm{~m}^{2}$. Those in the xy plane have area $12 \mathrm{~m}^{2}$, and those in the zx plane have area $6 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.7,5.0) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane? ${ }^{3}$
A. $4.745 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.220 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.742 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.316 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.948 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
4. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $z=0$ plane with corners at $(x, y)=(x=0, y=0),(x=3, y=0),(x=0, y=2)$, and $(x=3, y=2)$, where x and y are measured in meters. The electric field is, $\vec{E}=1 y^{1} \hat{i}+2 x^{3} \hat{j}+3 y^{2} \hat{k}$. ${ }^{4}$
A. $1.983 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.182 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
C. $2.400 \mathrm{E}+01 \mathrm{~V} \cdot \mathbf{m}$
D. $2.640 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
E. $2.904 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
5. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 5 nano-Coulombs. What is the magnitude of the electric field at a distance of 3.5 m from the center of the shells? ${ }^{5}$
A. $1.102 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $1.212 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.333 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.467 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.613 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
6. A non-conducting sphere of radius $\mathrm{R}=2 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\mathrm{ar}^{2}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=1 \mathrm{nC} \cdot \mathrm{m}^{-1}$. What is the magnitude of the electric field at a distance of 1 m from the center? ${ }^{6}$
A. $1.867 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $2.053 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $2.259 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $2.485 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $2.733 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$

2 Renditions

2.1

1. $\mathrm{x} \mathbf{y}_{\mathrm{y}_{0}} \quad \mathrm{y}_{1}$ Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.4 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.6 \mathrm{~m}$. The surfaces in the yz plane each have area $11.0 \mathrm{~m}^{2}$. Those in the xy plane have area $9.0 \mathrm{~m}^{2}$, and those in the zx plane have area $9.5 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 35° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.445 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.089 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.798 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $8.578 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $9.436 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
2.

 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.2 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.9 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $3.6 \mathrm{~m}^{2}$, and those in the zx plane have area $6.7 \mathrm{~m}^{2}$. An electric field of magnitude $16 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 53° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.420 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.862 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.348 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $5.882 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.471 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
3.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.1 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.0 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.7 \mathrm{~m}$. The surfaces in the yz plane each have area $14.0 \mathrm{~m}^{2}$. Those in the xy plane have area $3.9 \mathrm{~m}^{2}$, and those in the zx plane have area $4.3 \mathrm{~m}^{2}$. An electric field of magnitude $18 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 31° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.521 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.973 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.470 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.017 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.619 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
4.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.9 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.1 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.7 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.6 \mathrm{~m}^{2}$, and those in the zx plane have area $6.5 \mathrm{~m}^{2}$. An electric field of magnitude $12 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 46° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.385 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.923 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $6.516 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $7.167 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.884 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.2 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.6 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.7 \mathrm{~m}$. The surfaces in the yz plane each have area $11.0 \mathrm{~m}^{2}$. Those in the xy plane have area $4.7 \mathrm{~m}^{2}$, and those in the zx plane have area $4.0 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 43° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.214 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.436 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.679 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.947 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $3.242 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
6.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.1 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.2 \mathrm{~m}$. The surfaces in the yz plane each have area $9.4 \mathrm{~m}^{2}$. Those in the xy plane have area $8.2 \mathrm{~m}^{2}$, and those in the zx plane have area $5.0 \mathrm{~m}^{2}$. An electric field of magnitude $6 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 29° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.186 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.404 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.645 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.909 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $3.200 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
7.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.6 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.4 \mathrm{~m}$. The surfaces in the yz plane each have area $14.0 \mathrm{~m}^{2}$. Those in the xy plane have area $11.0 \mathrm{~m}^{2}$, and those in the zx plane have area $8.3 \mathrm{~m}^{2}$. An electric field of magnitude $9 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 39° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.809 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.290 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.819 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.401 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.041 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.1 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.3 \mathrm{~m}$. The surfaces in the yz plane each have area $13.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.8 \mathrm{~m}^{2}$, and those in the zx plane have area $6.7 \mathrm{~m}^{2}$. An electric field of magnitude $10 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 39° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.924 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.316 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.748 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $5.222 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.745 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
9.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.2 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.1 \mathrm{~m}$. The surfaces in the yz plane each have area $8.7 \mathrm{~m}^{2}$. Those in the xy plane have area $7.2 \mathrm{~m}^{2}$, and those in the zx plane have area $7.0 \mathrm{~m}^{2}$. An electric field of magnitude $12 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 58° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.024 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.426 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.868 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $5.355 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.891 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
10.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.4 \mathrm{~m}$. The surfaces in the yz plane each have area $13.0 \mathrm{~m}^{2}$. Those in the xy plane have area $9.8 \mathrm{~m}^{2}$, and those in the zx plane have area $7.4 \mathrm{~m}^{2}$. An electric field of magnitude $18 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 46° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $8.457 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $9.303 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $1.023 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.126 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.238 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
11.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.7 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.7 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.4 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.8 \mathrm{~m}$. The surfaces in the yz plane each have area $14.0 \mathrm{~m}^{2}$. Those in the xy plane have area $7.1 \mathrm{~m}^{2}$, and those in the zx plane have area $5.8 \mathrm{~m}^{2}$. An electric field of magnitude $19 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 33° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.920 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.612 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $8.373 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $9.210 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.013 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
12.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.7 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.9 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.7 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.7 \mathrm{~m}$. The surfaces in the yz plane each have area $9.6 \mathrm{~m}^{2}$. Those in the xy plane have area $4.1 \mathrm{~m}^{2}$, and those in the zx plane have area $6.8 \mathrm{~m}^{2}$. An electric field of magnitude $13 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 27° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $7.876 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $8.664 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $9.531 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.048 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.153 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
13.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.5 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.9 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.4 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $5.3 \mathrm{~m}^{2}$, and those in the zx plane have area $5.0 \mathrm{~m}^{2}$. An electric field of magnitude $18 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 29° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $7.793 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $8.572 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $9.429 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.037 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.141 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.2 \mathrm{~m}$. The surfaces in the yz plane each have area $18.0 \mathrm{~m}^{2}$. Those in the xy plane have area $12.0 \mathrm{~m}^{2}$, and those in the zx plane have area $11.0 \mathrm{~m}^{2}$. An electric field of magnitude $13 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 60° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.606 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $6.167 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $6.784 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $7.462 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $8.208 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
15.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.0 \mathrm{~m}$. The surfaces in the yz plane each have area $17.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.4 \mathrm{~m}^{2}$, and those in the zx plane have area $5.3 \mathrm{~m}^{2}$. An electric field of magnitude $5 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 25° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $1.992 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.192 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.411 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.652 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.917 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
16.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.5 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.7 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.1 \mathrm{~m}$. The surfaces in the yz plane each have area $15.0 \mathrm{~m}^{2}$. Those in the xy plane have area $9.9 \mathrm{~m}^{2}$, and those in the zx plane have area $7.8 \mathrm{~m}^{2}$. An electric field of magnitude $6 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 58° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $1.698 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $1.868 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.055 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.260 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.486 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
17.

surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.7 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.8 \mathrm{~m}$. The surfaces in the yz plane each have area $18.0 \mathrm{~m}^{2}$. Those in the xy plane have area $5.6 \mathrm{~m}^{2}$, and those in the zx plane have area $5.3 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 40° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.712 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.083 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.491 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.940 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.434 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.0 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.3 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.4 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.2 \mathrm{~m}$. The surfaces in the yz plane each have area $9.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.2 \mathrm{~m}^{2}$, and those in the zx plane have area $5.8 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 32° above the xy -plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.695 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.065 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.472 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.919 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.411 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
19.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.9 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.6 \mathrm{~m}$. The surfaces in the yz plane each have area $16.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.8 \mathrm{~m}^{2}$, and those in the zx plane have area $7.7 \mathrm{~m}^{2}$. An electric field of magnitude $18 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 57° above the xy-plane (i.e. above the y axis.) What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.898 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.588 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $8.347 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $9.181 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.010 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

2.2

1.

 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.2 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.8 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.3 \mathrm{~m}$. The surfaces in the yz plane each have area $7.5 \mathrm{~m}^{2}$. Those in the xy plane have area $3.6 \mathrm{~m}^{2}$, and those in the zx plane have area $3.0 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 49° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.058 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.264 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.491 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.740 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $3.014 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.9 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.9 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.3 \mathrm{~m}$. The surfaces in the yz plane each have area $17.0 \mathrm{~m}^{2}$. Those in the xy plane have area $12.0 \mathrm{~m}^{2}$, and those in the zx plane have area $12.0 \mathrm{~m}^{2}$. An electric field of magnitude $5 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 26° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $1.737 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $1.910 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2 \cdot 101 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.311 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.543 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
3.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.6 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.4 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.4 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.6 \mathrm{~m}$. The surfaces in the yz plane each have area $16.0 \mathrm{~m}^{2}$. Those in the xy plane have area $9.6 \mathrm{~m}^{2}$, and those in the zx plane have area $11.0 \mathrm{~m}^{2}$. An electric field of magnitude $15 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 33° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $8.921 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $9.813 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $1.079 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.187 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.306 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
4.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.6 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.8 \mathrm{~m}$. The surfaces in the yz plane each have area $13.0 \mathrm{~m}^{2}$. Those in the xy plane have area $7.1 \mathrm{~m}^{2}$, and those in the zx plane have area $9.7 \mathrm{~m}^{2}$. An electric field of magnitude $17 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 43° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $8.415 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $9.256 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $1.018 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.120 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.232 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
5.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.0 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.8 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.9 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.9 \mathrm{~m}$. The surfaces in the yz plane each have area $16.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.0 \mathrm{~m}^{2}$, and those in the zx plane have area $8.0 \mathrm{~m}^{2}$. An electric field of magnitude $8 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 39° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.662 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.028 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.430 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.873 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.361 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
6.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.7 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.4 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.9 \mathrm{~m}$. The surfaces in the yz plane each have area $13.0 \mathrm{~m}^{2}$. Those in the xy plane have area $7.6 \mathrm{~m}^{2}$, and those in the zx plane have area $13.0 \mathrm{~m}^{2}$. An electric field of magnitude $8 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 46° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.988 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.487 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $6.035 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.639 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.303 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
7.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.7 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.7 \mathrm{~m}$. The surfaces in the yz plane each have area $9.6 \mathrm{~m}^{2}$. Those in the xy plane have area $9.2 \mathrm{~m}^{2}$, and those in the zx plane have area $8.1 \mathrm{~m}^{2}$. An electric field of magnitude $6 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 32° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.134 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.347 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.582 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.840 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $3.124 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.2 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.5 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.7 \mathrm{~m}$. The surfaces in the yz plane each have area $8.3 \mathrm{~m}^{2}$. Those in the xy plane have area $5.7 \mathrm{~m}^{2}$, and those in the zx plane have area $7.0 \mathrm{~m}^{2}$. An electric field of magnitude $18 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 28° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.408 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.949 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $6.544 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $7.198 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.918 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

9.		
y_{0}	y_{1}	Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.6 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.4 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.5 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.5 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $4.6 \mathrm{~m}^{2}$, and those in the zx plane have area $6.4 \mathrm{~m}^{2}$. An electric field of magnitude $8 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 39° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

A. $3.222 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.544 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $3.899 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.289 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $4.718 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
10.

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.2 m$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.8 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.5 \mathrm{~m}$. The surfaces in the yz plane each have area $15.0 \mathrm{~m}^{2}$. Those in the xy plane have area $7.7 \mathrm{~m}^{2}$, and those in the zx plane have area $9.5 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 50° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.989 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $6.588 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.247 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $7.971 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $8.769 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
11.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.5 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.6 \mathrm{~m}$. The surfaces in the yz plane each have area $9.9 \mathrm{~m}^{2}$. Those in the xy plane have area $4.3 \mathrm{~m}^{2}$, and those in the zx plane have area $5.1 \mathrm{~m}^{2}$. An electric field of magnitude $19 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 31° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.750 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.125 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.537 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.991 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.490 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.5 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.7 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.6 \mathrm{~m}$. The surfaces in the yz plane each have area $9.9 \mathrm{~m}^{2}$. Those in the xy plane have area $8.5 \mathrm{~m}^{2}$, and those in the zx plane have area $7.2 \mathrm{~m}^{2}$. An electric field of magnitude $14 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 55° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $8.314 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $9.146 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $1.006 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.107 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.217 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
13.

surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.7 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.5 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.0 \mathrm{~m}^{2}$, and those in the zx plane have area $3.5 \mathrm{~m}^{2}$. An electric field of magnitude $5 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 38° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $9.823 \mathrm{E}+00 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $1.080 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $1.189 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.307 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.438 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
14.

surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.5 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.9 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.1 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.3 \mathrm{~m}$. The surfaces in the yz plane each have area $15.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.8 \mathrm{~m}^{2}$, and those in the zx plane have area $10.0 \mathrm{~m}^{2}$. An electric field of magnitude $9 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 50° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.439 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.983 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $6.581 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $7.239 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.963 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
15.
 in $\mathrm{y}=\mathrm{y}_{0}=1.3 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.4 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.4 \mathrm{~m}$ and $\mathrm{z}=\mathrm{Z}_{1}=5.5 \mathrm{~m}$. The surfaces in the yz plane each have area $13.0 \mathrm{~m}^{2}$. Those in the xy plane have area $5.0 \mathrm{~m}^{2}$, and those in the zx plane have area $6.6 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 34° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.756 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.032 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $3.335 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $3.668 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $4.035 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
16.

surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.9 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.4 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.5 \mathrm{~m}$. The surfaces in the yz plane each have area $14.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.2 \mathrm{~m}^{2}$, and those in the zx plane have area $9.8 \mathrm{~m}^{2}$. An electric field of magnitude $11 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 58° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.270 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $6.897 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.586 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $8.345 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $9.179 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
17.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.2 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.4 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.5 \mathrm{~m}$. The surfaces in the yz plane each have area $9.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.4 \mathrm{~m}^{2}$, and those in the zx plane have area $6.8 \mathrm{~m}^{2}$. An electric field of magnitude $15 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 31° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.959 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.354 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.790 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $5 \cdot 269 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $5.796 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.9 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.2 \mathrm{~m}$. The surfaces in the yz plane each have area $18.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.5 \mathrm{~m}^{2}$, and those in the zx plane have area $7.0 \mathrm{~m}^{2}$. An electric field of magnitude $12 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 49° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.777 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.254 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.780 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.358 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.993 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
19.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.3 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.7 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.9 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.4 \mathrm{~m}$. The surfaces in the yz plane each have area $15.0 \mathrm{~m}^{2}$. Those in the xy plane have area $11.0 \mathrm{~m}^{2}$, and those in the zx plane have area $8.4 \mathrm{~m}^{2}$. An electric field of magnitude $8 \mathrm{~N} / \mathrm{C}$ has components in the y and z directions and is directed at 26° from the z -axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.012 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.213 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.435 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.678 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.946 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

2.3

1.

 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.0 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.6 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.8 \mathrm{~m}$. The surfaces in the yz plane each have area $11.0 \mathrm{~m}^{2}$. Those in the xy plane have area $4.5 \mathrm{~m}^{2}$, and those in the zx plane have area $4.2 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,6.4,6.8) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.662 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.929 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $3.222 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $3.544 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $3.898 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
2. ${ }^{\mathrm{x}} \stackrel{\mathrm{y}_{0}}{\mathbf{y}_{1}}$ Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.7 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.9 \mathrm{~m}$. The surfaces in the yz plane each have area $8.1 \mathrm{~m}^{2}$. Those in the xy plane have area $7.0 \mathrm{~m}^{2}$, and those in the zx plane have area $8.4 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,9.2,7.1) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.364 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.000 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.700 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $8.470 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $9.317 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.6 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.2 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.9 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.9 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.0 \mathrm{~m}$. The surfaces in the yz plane each have area $15.0 \mathrm{~m}^{2}$. Those in the xy plane have area $12.0 \mathrm{~m}^{2}$, and those in the zx plane have area $8.1 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.1,6.8) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.529 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.181 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.900 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $8.690 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $9.559 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
4.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.6 \mathrm{~m}$. The surfaces in the yz plane each have area $16.0 \mathrm{~m}^{2}$. Those in the xy plane have area $4.8 \mathrm{~m}^{2}$, and those in the zx plane have area $5.6 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,5.5,9.1) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.074 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.382 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $3.720 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.092 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $4.501 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
5.
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.3 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.2 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.4 \mathrm{~m}$. The surfaces in the yz plane each have area $9.6 \mathrm{~m}^{2}$. Those in the xy plane have area $8.5 \mathrm{~m}^{2}$, and those in the zx plane have area $6.0 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.7,8.4) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.730 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.203 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.723 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.295 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.925 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
6.

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.3 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.2 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.9 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.5 \mathrm{~m}$. The surfaces in the yz plane each have area $10.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.1 \mathrm{~m}^{2}$, and those in the zx plane have area $10.0 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.5,6.4) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $7.081 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.789 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $8.568 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $9.425 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $1.037 \mathrm{E}+02 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
7.

surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=1.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.0 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.6 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.9 \mathrm{~m}$. The surfaces in the yz plane each have area $15.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.5 \mathrm{~m}^{2}$, and those in the zx plane have area $7.7 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.0,9.4) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.192 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $6.811 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.492 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $8.242 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $9.066 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
 surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.2 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.0 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.9 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.3 \mathrm{~m}$. The surfaces in the yz plane each have area $7.9 \mathrm{~m}^{2}$. Those in the xy plane have area $4.0 \mathrm{~m}^{2}$, and those in the zx plane have area $2.9 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,5.3,9.1) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $1.388 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $1.526 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $1.679 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $1.847 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.032 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.3 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.7 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.5 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.0 \mathrm{~m}^{2}$, and those in the zx plane have area $3.9 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,6.5,9.8) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $1.740 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $1.914 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.106 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.316 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.548 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
10.

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.0 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.4 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.7 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.2 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.1 \mathrm{~m}$. The surfaces in the yz plane each have area $9.6 \mathrm{~m}^{2}$. Those in the xy plane have area $6.6 \mathrm{~m}^{2}$, and those in the zx plane have area $5.8 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.4,5.8) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.328 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.660 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.026 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.429 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $4.872 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
11.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.0 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.8 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.2 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.8 \mathrm{~m}$. The surfaces in the yz plane each have area $11.0 \mathrm{~m}^{2}$. Those in the xy plane have area $4.8 \mathrm{~m}^{2}$, and those in the zx plane have area $9.0 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,6.1,5.6) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.125 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $4.537 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $4.991 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $5.490 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $6.039 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
12.
 surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.4 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.8 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.8 \mathrm{~m}$. The surfaces in the yz plane each have area $11.0 \mathrm{~m}^{2}$. Those in the xy plane have area $8.9 \mathrm{~m}^{2}$, and those in the zx plane have area $7.2 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,5.9,8.9) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.901 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.192 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $3.511 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $3.862 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $4.248 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
13.

surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.6 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.4 \mathrm{~m}$. The surfaces in the yz plane each have area $10.0 \mathrm{~m}^{2}$. Those in the xy plane have area $6.4 \mathrm{~m}^{2}$, and those in the zx plane have area $4.2 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,5.5,7.3) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $1.891 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.080 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.288 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.517 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $2.768 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
14.
 in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=42 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=11 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}-45 \mathrm{~m}$. The surfaces in the yz plane each have are $8.5 \mathrm{~m}^{2}$. Those in the xy plane have area $2.8 \mathrm{~m}^{2}$, and those in the zx plane have area $3.7 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,7.4,8.9) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $2.079 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $2.287 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $2.516 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $2.768 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $3.044 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.5 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.3 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.3 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $10.0 \mathrm{~m}^{2}$, and those in the zx plane have area $7.5 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,9.7,9.3) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $6.614 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $7.275 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $8.003 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $8.803 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $9.683 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
16.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{x}_{1}=2.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.1 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.8 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.5 \mathrm{~m}$. The surfaces in the yz plane each have area $17.0 \mathrm{~m}^{2}$. Those in the xy plane have area $13.0 \mathrm{~m}^{2}$, and those in the zx plane have area $10.0 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,7.0,5.7) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $4.953 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.449 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $5.993 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.593 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.252 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
17.
 in $\mathrm{y}=\mathrm{y}_{0}=1.5 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=5.6 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=4.2 \mathrm{~m}$. The surfaces in the yz plane each have area $12.0 \mathrm{~m}^{2}$. Those in the xy plane have area $11.0 \mathrm{~m}^{2}$, and those in the zx plane have area $7.8 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,8.5,7.3) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.000 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $5.500 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $6.050 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $6.656 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $7.321 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
18.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=1.5 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.6 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.3 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.3 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.1 \mathrm{~m}$. The surfaces in the yz plane each have area $10.0 \mathrm{~m}^{2}$. Those in the xy plane have area $4.0 \mathrm{~m}^{2}$, and those in the zx plane have area $5.7 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,5.7,7.5) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $3.249 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $3.574 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $3.931 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $4.324 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $4.757 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
19.

Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes $x=0$ and $x=x_{1}=2.8 \mathrm{~m}$. The other four surfaces are rectangles in $\mathrm{y}=\mathrm{y}_{0}=1.7 \mathrm{~m}, \mathrm{y}=\mathrm{y}_{1}=4.5 \mathrm{~m}, \mathrm{z}=\mathrm{z}_{0}=1.5 \mathrm{~m}$, and $\mathrm{z}=\mathrm{z}_{1}=5.0 \mathrm{~m}$. The surfaces in the yz plane each have area $9.8 \mathrm{~m}^{2}$. Those in the xy plane have area $7.8 \mathrm{~m}^{2}$, and those in the zx plane have area $9.8 \mathrm{~m}^{2}$. An electric field has the xyz components $(0,6.1,9.3) \mathrm{N} / \mathrm{C}$. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
A. $5.978 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B. $6.576 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C. $7.233 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D. $7.957 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E. $8.752 \mathrm{E}+01 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

2.4

1. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=4, y=0),(x=0, y=6)$, and $(x=4, y=6)$, where x and y are measured in meters. The electric field is, $\vec{E}=3 y^{1.9} \hat{i}+3 x^{1.5} \hat{j}+3 y^{1.6} \hat{k}$.
A. $3.658 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
B. $4.024 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
C. $4.426 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
D. $4.869 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
E. $5.355 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
2. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $z=0$ plane with corners at $(x, y)=(x=0, y=0),(x=4, y=0),(x=0, y=4)$, and $(x=4, y=4)$, where x and y are measured in meters. The electric field is, $\vec{E}=4 y^{2.2} \hat{i}+1 x^{3.0} \hat{j}+2 y^{1.7} \hat{k}$.
A. $8.545 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
B. $9.400 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
C. $1.034 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
D. $1.137 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.251 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
3. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $z=0$ plane with corners at $(x, y)=(x=0, y=0),(x=7, y=0),(x=0, y=7)$, and $(x=7, y=7)$, where x and y are measured in meters. The electric field is, $\vec{E}=4 y^{2.3} \hat{i}+3 x^{2.4} \hat{j}+2 y^{1.8} \hat{k}$.
A. $8.731 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
B. $9.604 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
C. $1.056 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $1.162 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.278 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
4. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(\mathrm{x}, \mathrm{y})=(\mathrm{x}=0, \mathrm{y}=0),(\mathrm{x}=5, \mathrm{y}=0),(\mathrm{x}=0, \mathrm{y}=7)$, and $(\mathrm{x}=5, \mathrm{y}=7)$, where x and y are measured in meters. The electric field is, $\vec{E}=3 y^{2.7} \hat{i}+1 x^{2.5} \hat{j}+3 y^{3.3} \hat{k}$.
A. $1.128 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
B. $1.241 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
C. $1.365 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
D. $1.502 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.652 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
5. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(\mathrm{x}, \mathrm{y})=(\mathrm{x}=0, \mathrm{y}=0),(\mathrm{x}=5, \mathrm{y}=0),(\mathrm{x}=0, \mathrm{y}=7)$, and $(\mathrm{x}=5, \mathrm{y}=7)$, where x and y are measured in meters. The electric field is, $\vec{E}=3 y^{2.9} \hat{i}+3 x^{1.6} \hat{j}+4 y^{2.5} \hat{k}$.
A. $4.286 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $4.714 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $5.186 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $5.704 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $6.275 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
6. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=8, y=0),(x=0, y=8)$, and $(x=8, y=8)$, where x and y are measured in meters. The electric field is, $\vec{E}=1 y^{2.8} \hat{i}+5 x^{2.7} \hat{j}+5 y^{1.6} \hat{k}$.
A. $3.429 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $3.771 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $4.149 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $4.564 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $5.020 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
7. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=7, y=0),(x=0, y=5)$, and $(x=7, y=5)$, where x and y are measured in meters. The electric field is, $\vec{E}=1 y^{2.4} \hat{i}+4 x^{1.7} \hat{j}+4 y^{2.1} \hat{k}$.
A. $1.206 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $1.326 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $1.459 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $1.605 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.765 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
8. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=7, y=0),(x=0, y=6)$, and $(x=7, y=6)$, where x and y are measured in meters. The electric field is, $\vec{E}=2 y^{2.5} \hat{i}+3 x^{1.8} \hat{j}+2 y^{2.8} \hat{k}$.
A. $\mathbf{3 . 3 3 7 E}+\mathbf{0 3} \mathrm{V} \cdot \mathrm{m}$
B. $3.670 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $4.037 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $4.441 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $4.885 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
9. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $z=0$ plane with corners at $(x, y)=(x=0, y=0),(x=9, y=0),(x=0, y=9)$, and $(x=9, y=9)$, where x and y are measured in meters. The electric field is, $\vec{E}=3 y^{2.8} \hat{i}+1 x^{2.3} \hat{j}+2 y^{2.9} \hat{k}$.
A. $2.210 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.431 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
C. $2.674 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
D. $2.941 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
E. $3.235 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
10. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(\mathrm{x}, \mathrm{y})=(\mathrm{x}=0, \mathrm{y}=0),(\mathrm{x}=7, \mathrm{y}=0),(\mathrm{x}=0, \mathrm{y}=4)$, and $(\mathrm{x}=7, \mathrm{y}=4)$, where x and y are measured in meters. The electric field is, $\vec{E}=2 y^{2.2} \hat{i}+3 x^{2.1} \hat{j}+5 y^{3.3} \hat{k}$.
A. $2.610 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.871 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $3.158 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $3.474 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $3.822 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
11. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=5, y=0),(x=0, y=7)$, and $(x=5, y=7)$, where x and y are measured in meters. The electric field is, $\vec{E}=2 y^{2.8} \hat{i}+3 x^{2.8} \hat{j}+2 y^{2.4} \hat{k}$.
A. $1.997 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.197 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $2.417 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $2.659 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $2.924 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
12. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=8, y=0),(x=0, y=6)$, and $(x=8, y=6)$, where x and y are measured in meters. The electric field is, $\vec{E}=4 y^{1.4} \hat{i}+2 x^{2.3} \hat{j}+4 y^{2.3} \hat{k}$.
A. $2.694 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.963 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $3.259 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $3.585 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $3.944 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
13. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=6, y=0),(x=0, y=5)$, and $(x=6, y=5)$, where x and y are measured in meters. The electric field is, $\vec{E}=3 y^{1.7} \hat{i}+3 x^{1.6} \hat{j}+4 y^{2.7} \hat{k}$.
A. $2.067 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.274 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $2.501 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $2.752 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $3.027 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
14. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=6, y=0),(x=0, y=6)$, and $(x=6, y=6)$, where x and y are measured in meters. The electric field is, $\vec{E}=2 y^{1.8} \hat{i}+3 x^{1.9} \hat{j}+5 y^{3.2} \hat{k}$.
A. $9.952 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $1.095 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
C. $1.204 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
D. $1.325 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.457 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
15. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(\mathrm{x}, \mathrm{y})=(\mathrm{x}=0, \mathrm{y}=0),(\mathrm{x}=6, \mathrm{y}=0),(\mathrm{x}=0, \mathrm{y}=6)$, and $(\mathrm{x}=6, \mathrm{y}=6)$, where x and y are measured in meters. The electric field is, $\vec{E}=4 y^{2.0} \hat{i}+3 x^{2.0} \hat{j}+3 y^{3.0} \hat{k}$.
A. $4.820 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $5.302 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $\mathbf{5 . 8 3 2} \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $6.415 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $7.057 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
16. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=6, y=0),(x=0, y=3)$, and $(x=6, y=3)$, where x and y are measured in meters. The electric field is, $\vec{E}=1 y^{1.6} \hat{i}+3 x^{2.6} \hat{j}+2 y^{3.2} \hat{k}$.
A. $1.969 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
B. $2.166 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
C. $2.383 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
D. $2.621 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
E. $2.883 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
17. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=4, y=0),(x=0, y=3)$, and $(x=4, y=3)$, where x and y are measured in meters. The electric field is, $\vec{E}=2 y^{2.7} \hat{i}+2 x^{2.9} \hat{j}+2 y^{2.0} \hat{k}$.
A. $7.200 \mathrm{E}+01 \mathrm{~V} \cdot \mathbf{m}$
B. $7.920 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
C. $8.712 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
D. $9.583 \mathrm{E}+01 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.054 \mathrm{E}+02 \mathrm{~V} \cdot \mathrm{~m}$
18. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(x, y)=(x=0, y=0),(x=4, y=0),(x=0, y=9)$, and $(x=4, y=9)$, where x and y are measured in meters. The electric field is, $\vec{E}=1 y^{2.2} \hat{i}+1 x^{3.3} \hat{j}+5 y^{2.4} \hat{k}$.
A. $7.054 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $7.759 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $8.535 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
D. $9.388 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.033 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
19. What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the $\mathrm{z}=0$ plane with corners at $(\mathrm{x}, \mathrm{y})=(\mathrm{x}=0, \mathrm{y}=0),(\mathrm{x}=8, \mathrm{y}=0),(\mathrm{x}=0, \mathrm{y}=8)$, and $(\mathrm{x}=8, \mathrm{y}=8)$, where x and y are measured in meters. The electric field is, $\vec{E}=2 y^{2.0} \hat{i}+2 x^{2.1} \hat{j}+3 y^{2.5} \hat{k}$.
A. $9.027 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
B. $9.930 \mathrm{E}+03 \mathrm{~V} \cdot \mathrm{~m}$
C. $1.092 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
D. $1.202 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$
E. $1.322 \mathrm{E}+04 \mathrm{~V} \cdot \mathrm{~m}$

2.5

1. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 2.8 nano-Coulombs. What is the magnitude of the electric field at a distance of 3.5 m from the center of the shells?
A. $6.171 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $6.789 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $7.467 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $8.214 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $9.036 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
2. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 5.6 nano-Coulombs. What is the magnitude of the electric field at a distance of 3.6 m from the center of the shells?
A. $9.642 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $1.061 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.167 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.283 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.412 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
3. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 7.6 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?
A. $1.017 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $1.118 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.230 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.353 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.488 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
4. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$). Each is uniformly charged with 3.4 nano-Coulombs. What is the magnitude of the electric field at a distance of 2.8 m from the center of the shells?
A. $5.865 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $6.451 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $7.096 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $7.806 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $8.587 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
5. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 9.7 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.4 m from the center of the shells?
A. $1.491 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $1.640 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.804 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.984 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $2.182 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
6. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 6.5 nano-Coulombs. What is the magnitude of the electric field at a distance of 1.3 m from the center of the shells?
A. $2.601 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $2.861 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $3.147 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $3.462 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $3.808 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
7. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 2.8 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.8 m from the center of the shells?
A. $2.988 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $3.287 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $3.616 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $3.977 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $4.375 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
8. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 7.8 nano-Coulombs. What is the magnitude of the electric field at a distance of 1.3 m from the center of the shells?
A. $2.837 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $3.121 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $3.433 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $3.776 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $4.154 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
9. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 5.6 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.6 m from the center of the shells?
A. $6.641 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $7.305 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $8.036 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $8.839 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $9.723 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
10. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 7.4 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.4 m from the center of the shells?
A. $8.580 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $9.438 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $1.038 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.142 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.256 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
11. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 3.4 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.5 m from the center of the shells?
A. $5.058 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $5.564 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $6.120 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $6.732 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $7.405 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
12. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 1.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?
A. $1.096 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $1.206 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $1.327 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $1.459 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $1.605 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
13. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 2.0 nano-Coulombs. What is the magnitude of the electric field at a distance of 3.7 m from the center of the shells?
A. $2.964 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $3.260 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $3.586 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $3.944 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $4.339 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
14. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 6.4 nano-Coulombs. What is the magnitude of the electric field at a distance of 1.1 m from the center of the shells?
A. $3.251 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $3.577 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $3.934 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $4.328 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $4.760 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
15. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 7.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.6 m from the center of the shells?
A. $1.114 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $1.225 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.347 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.482 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.630 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
16. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 4.7 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.2 m from the center of the shells?
A. $9.592 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $1.055 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.161 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.277 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.404 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
17. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 1.9 nano-Coulombs. What is the magnitude of the electric field at a distance of 2.1 m from the center of the shells?
A. $5.297 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $5.827 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
C. $6.409 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
D. $7.050 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
E. $7.755 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
18. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 9.0 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.5 m from the center of the shells?
A. $9.144 \mathrm{E}+00 \mathrm{~N} / \mathrm{C}$
B. $1.006 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $1.106 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $1.217 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $1.339 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
19. Five concentric spherical shells have radius of exactly ($1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$).Each is uniformly charged with 7.3 nano-Coulombs. What is the magnitude of the electric field at a distance of 1.5 m from the center of the shells?
A. $1.994 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $2.194 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $2.413 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $2.655 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $2.920 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$

2.6

1. A non-conducting sphere of radius $\mathrm{R}=1.7 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.6}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.4}$. What is the magnitude of the electric field at a distance of 1.4 m from the center?
A. $1.327 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $1.460 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $1.606 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $1.767 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $1.943 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
2. A non-conducting sphere of radius $\mathrm{R}=2.2 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.4}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.6}$. What is the magnitude of the electric field at a distance of 0.86 m from the center?
A. $4.874 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $5.362 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $5.898 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $6.488 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $7.137 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
3. A non-conducting sphere of radius $\mathrm{R}=3.5 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.5}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.5}$. What is the magnitude of the electric field at a distance of 2.2 m from the center?
A. $3.604 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $3.964 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $4.360 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $4.796 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $5.276 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
4. A non-conducting sphere of radius $\mathrm{R}=3.5 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.2}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.8}$. What is the magnitude of the electric field at a distance of 2.3 m from the center?
A. $2.777 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $3.055 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $3.361 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $3.697 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $4.066 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
5. A non-conducting sphere of radius $\mathrm{R}=2.9 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.5}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.5}$. What is the magnitude of the electric field at a distance of 1.5 m from the center?
A. $1.383 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $1.522 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $1.674 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $1.841 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $2.025 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
6. A non-conducting sphere of radius $\mathrm{R}=3.8 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.5}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.5}$. What is the magnitude of the electric field at a distance of 3.0 m from the center?
A. $7.825 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $8.607 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $9.468 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $1.041 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
E. $1.146 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
7. A non-conducting sphere of radius $\mathrm{R}=3.3 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.4}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.6}$. What is the magnitude of the electric field at a distance of 1.5 m from the center?
A. $1.123 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $1.235 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $1.358 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $1.494 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $1.644 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
8. A non-conducting sphere of radius $\mathrm{R}=3.1 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.2}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.8}$. What is the magnitude of the electric field at a distance of 2.7 m from the center?
A. $4.782 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $5.260 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $5.787 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $6.365 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $7.002 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
9. A non-conducting sphere of radius $\mathrm{R}=1.7 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.2}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.8}$. What is the magnitude of the electric field at a distance of 0.71 m from the center?
A. $3.797 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $4.177 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $4.595 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $5.054 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $5.560 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
10. A non-conducting sphere of radius $\mathrm{R}=1.4 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.6}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.4}$. What is the magnitude of the electric field at a distance of 1.3 m from the center?
A. $1.457 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $1.603 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $1.763 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $1.939 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $2.133 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
11. A non-conducting sphere of radius $\mathrm{R}=3.9 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.4}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.6}$. What is the magnitude of the electric field at a distance of 2.6 m from the center?
A. $3.821 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $4.203 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $4.624 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $5.086 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $5.594 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
12. A non-conducting sphere of radius $\mathrm{R}=1.5 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.5}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.5}$. What is the magnitude of the electric field at a distance of 0.73 m from the center?
A. $2.285 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $2.514 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $2.765 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $3.042 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $3.346 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
13. A non-conducting sphere of radius $\mathrm{R}=3.7 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.4}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.6}$. What is the magnitude of the electric field at a distance of 3.1 m from the center?
A. $6.411 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $7.052 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $7.757 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $8.533 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $9.386 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
14. A non-conducting sphere of radius $\mathrm{R}=3.8 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.7}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.3}$. What is the magnitude of the electric field at a distance of 3.1 m from the center?
A. $1.390 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
B. $1.530 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
C. $1.682 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
D. $1.851 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
E. $2.036 \mathrm{E}+03 \mathrm{~N} / \mathrm{C}$
15. A non-conducting sphere of radius $\mathrm{R}=1.7 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.5}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.5}$. What is the magnitude of the electric field at a distance of 0.64 m from the center?
A. $2.039 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $2.243 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $2.467 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $2.714 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $2.985 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
16. A non-conducting sphere of radius $\mathrm{R}=1.2 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.6}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.4}$. What is the magnitude of the electric field at a distance of 0.76 m from the center?
A. $2.406 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
B. $2.646 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
C. $2.911 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
D. $3.202 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
E. $3.522 \mathrm{E}+01 \mathrm{~N} / \mathrm{C}$
17. A non-conducting sphere of radius $\mathrm{R}=2.5 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.8}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.2}$. What is the magnitude of the electric field at a distance of 1.7 m from the center?
A. $2.079 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $2.287 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $2.516 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $2.767 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $3.044 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
18. A non-conducting sphere of radius $\mathrm{R}=2.9 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\mathrm{ar}^{1.5}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=3 \mathrm{nC} \cdot \mathrm{m}^{-1.5}$. What is the magnitude of the electric field at a distance of 1.7 m from the center?
A. $2.579 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $2.837 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $3.121 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $3.433 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $3.776 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
19. A non-conducting sphere of radius $\mathrm{R}=3.0 \mathrm{~m}$ has a non-uniform charge density that varies with the distnce from its center as given by $\rho(\mathrm{r})=\operatorname{ar}^{1.2}(\mathrm{r} x \mathrm{R})$ where $\mathrm{a}=2 \mathrm{nC} \cdot \mathrm{m}^{-1.8}$. What is the magnitude of the electric field at a distance of 2.1 m from the center?
A. $2.274 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
B. $2.501 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
C. $2.751 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
D. $3.026 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$
E. $3.329 \mathrm{E}+02 \mathrm{~N} / \mathrm{C}$

3 Attribution

Notes

${ }^{1}$ Example 6.3 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:7Rx6Svvy@4/61-Electric-Flux_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1894335
${ }^{2}$ Example 6.3a from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:7Rx6Svvy@4/61-Electric-Flux_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1894335
${ }^{3}$ Example 6.3b from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:7Rx6Svvy@4/61-Electric-Flux_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1894335
${ }^{4}$ Example 6.4 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:7Rx6Svvy@4/61-Electric-Flux_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1894335
${ }^{5}$ Inspired by Example 6.6 from OpenStax University Physics2, but modified by [[user:Guy vandegrift]] to be Public Domain (CC0)_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1894335
${ }^{6}$ Example 6.7 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:7NEpGtkt@4/63-Applying-GausssLaw_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1894335

