Characteristics of Multiple Random Variables

Young W Lim

June 7, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

Expected Value of a Function with Multiple Random Variables

Expected Value two random variables

Definition

the expected value of g(x,y) is given by

$$\overline{g} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

where g(x, y) is some function of two random variables X and Y

Expected Value N random variables

Definition

for N random variables $X_1, X_2, ..., X_N$, the expected value of $g(X_1, X_2, ..., X_N)$ is given by

$$\overline{g} = E[g(X_1, X_2, ..., X_N)]$$

$$=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}g(x_1,...,x_N)f_{x_1,...,x_N}(x_1,...,x_N)dx_1\cdots dx_N$$

where $g(X_1, X_2, ..., X_N)$ is some function of N random variables $X_1, X_2, ..., X_N$

Expected Value

N random variables to a single random variable

If
$$g(X_1,X_2,...,X_N)=g(X_1)$$
, then
$$\overline{g}=E[g(X_1,X_2,...,X_N)]$$

$$=\int_{-\infty}^{\infty}g(x_1)f_{x_1}(x_1)dx_1=E[g(X_1)]$$

$$\overline{g}=E[g(X_1,X_2,...,X_N)]=E[g(X_1)]$$

Joint Moments about the Origin 2 random variables

Definition

joint moment about the origin $m_{\{nk\}}$ is defined by

$$m_{\{nk\}} = E[X^n Y^k] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^n y^k f_{X,Y}(x,y) dx dy$$

the second moment $m_{\{11\}} = E[XY]$ is called the correlation $R_{\{XY\}}$ of X and Y

$$R_{\{XY\}} = m_{\{11\}} = E[X^1Y^1] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^1y^1f_{X,Y}(x,y)dxdy$$

if the correlation $R_{\{XY\}}$ can be written as $R_{\{XY\}} = E[X]E[Y]$, then X and Y are uncorrelated statistical independence of X and Y is sufficient to guaranttee they are uncorrelated