Characteristics of Multiple Random Variables

Young W Lim

June 7, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Expected Value of a Function with Multiple Random Variables

Expected Value

Definition

the expected value of $g(x, y)$ is given by

$$
\bar{g}=E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
$$

whereg (x, y) is some function of two random variables X and Y

Expected Value

N random variables

Definition

for N random variables $X_{1}, X_{2}, \ldots, X_{N}$, the expected value of $g\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ is given by

$$
\begin{gathered}
\bar{g}=E\left[g\left(X_{1}, X_{2}, \ldots, X_{N}\right)\right] \\
=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{N}\right) f_{x_{1}, \ldots, x_{N}}\left(x_{1}, \ldots, x_{N}\right) d x_{1} \cdots d x_{N}
\end{gathered}
$$

where $g\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ is some function of N random variables $X_{1}, X_{2}, \ldots, X_{N}$

Expected Value

N random variables to a single random variable

If $g\left(X_{1}, X_{2}, \ldots, X_{N}\right)=g\left(X_{1}\right)$, then

$$
\begin{gathered}
\bar{g}=E\left[g\left(X_{1}, X_{2}, \ldots, X_{N}\right)\right] \\
=\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{x_{1}}\left(x_{1}\right) d x_{1}=E\left[g\left(X_{1}\right)\right] \\
\bar{g}=E\left[g\left(X_{1}, X_{2}, \ldots, X_{N}\right)\right]=E\left[g\left(X_{1}\right)\right]
\end{gathered}
$$

Joint Moments about the Origin

2 random variables

Definition

joint moment about the origin $m_{\{n k\}}$ is defined by

$$
m_{\{n k\}}=E\left[X^{n} Y^{k}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{n} y^{k} f_{X, Y}(x, y) d x d y
$$

the second moment $m_{\{11\}}=E[X Y]$ is called the correlation $R_{\{X Y\}}$ of X and Y

$$
R_{\{X Y\}}=m_{\{11\}}=E\left[X^{1} Y^{1}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{1} y^{1} f_{X, Y}(x, y) d x d y
$$

if the correlation $R_{\{X Y\}}$ can be written as $R_{\{X Y\}}=E[X] E[Y]$, then X and Y are uncorrelated
statistical independence of X and Y is sufficient to guaranttee they are uncorrelated

