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Partitioning address bits

x-bits y-bits

There are total 2^x entries
Each entry consists of 2^y sub-entries

offsetindex

x-bits y-bits

Index: which entry among 2^x entries
Offset: which sub-entry among 2^y sub-entries
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Data Units

byte

word (= 4 bytes)

block (= 4 words assumed)
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Word Partitioning

2-bits
There are total 2^(t+s+b) words
Each word consists of 2^2 bytes

word index

Index: which word among 2^(t+s+b) words
Offset: which byte among 2^y bytes

t-bits s-bits w-bits
byte

word

2-bitst-bits s-bits w-bits
byte offset
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Block Partitioning

2-bits
There are total 2^(t+s+b) words
Each word consists of 2^2 bytes

block index

block index : which block
word offset : which word within a block
byte offset : which byte within a block

t-bits s-bits w-bits
byte

word

2-bitst-bits s-bits w-bits
word offset

byte offset
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Block Index Hashing

2-bits
There are total 2^(t+s+b) words
Each word consists of 2^2 bytes

block index

Use tag to avoid collision 
within a bucket 

t-bits s-bits w-bits
byte

word

t-bits s-bits

set index

Modulo Hash Function

bucket index
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Memory Map Figures

Increasing 
byte addresses

Increasing 
byte addresses

Figure Type 1 Figure Type 2

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C



Cache Memory
Address (1B)

9 Young Won Lim
6/2/16

0A 0B 0C 0D

Endianness

0C 0B 0A0D 0C 0B 0A0D

Figure Type 1 Figure Type 2
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https://en.wikipedia.org/wiki/Endianness

Little Endian

Big Endian

LSByte

LSByte
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Tag and Set Fields

8 sets 3-bit set field

4 sets 2-bit set field

2 sets 1-bit set field

1 set 0-bit set field

tag set word
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Unit of Cache Memory Content

tag field of an address

A corresponding block of words

Tag Memory Data Memory

block data

block data

block data

block data

tag field of an address

tag field of an address

tag field of an address

Cache Line

Cache Line

Cache Line

Cache Line
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CAM (Content Addressable Memory) 
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CAM (Content Addressable Memory) 
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