
Young Won Lim
6/2/16

Address Partitioning (1B)

Young Won Lim
6/2/16

 Copyright (c) 2010-2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Cache Memory
Address (1B)

3 Young Won Lim
6/2/16

Partitioning address bits

x-bits y-bits

There are total 2^x entries
Each entry consists of 2^y sub-entries

offsetindex

x-bits y-bits

Index: which entry among 2^x entries
Offset: which sub-entry among 2^y sub-entries

Cache Memory
Address (1B)

4 Young Won Lim
6/2/16

Data Units

byte

word (= 4 bytes)

block (= 4 words assumed)

Cache Memory
Address (1B)

5 Young Won Lim
6/2/16

Word Partitioning

2-bits
There are total 2^(t+s+b) words
Each word consists of 2^2 bytes

word index

Index: which word among 2^(t+s+b) words
Offset: which byte among 2^y bytes

t-bits s-bits w-bits
byte

word

2-bitst-bits s-bits w-bits
byte offset

Cache Memory
Address (1B)

6 Young Won Lim
6/2/16

Block Partitioning

2-bits
There are total 2^(t+s+b) words
Each word consists of 2^2 bytes

block index

block index : which block
word offset : which word within a block
byte offset : which byte within a block

t-bits s-bits w-bits
byte

word

2-bitst-bits s-bits w-bits
word offset

byte offset

Cache Memory
Address (1B)

7 Young Won Lim
6/2/16

Block Index Hashing

2-bits
There are total 2^(t+s+b) words
Each word consists of 2^2 bytes

block index

Use tag to avoid collision
within a bucket

t-bits s-bits w-bits
byte

word

t-bits s-bits

set index

Modulo Hash Function

bucket index

Cache Memory
Address (1B)

8 Young Won Lim
6/2/16

Memory Map Figures

Increasing
byte addresses

Increasing
byte addresses

Figure Type 1 Figure Type 2

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

Cache Memory
Address (1B)

9 Young Won Lim
6/2/16

0A 0B 0C 0D

Endianness

0C 0B 0A0D 0C 0B 0A0D

Figure Type 1 Figure Type 2

0x00

0x04

0x08

0x0C

0x00

0x04

0x08

0x0C

0D 0C 0B 0A0B 0C 0D0A

Figure Type 1 Figure Type 2

0x00

0x04

0x08

0x0C

0x00

0x04

0x08

0x0C

https://en.wikipedia.org/wiki/Endianness

Little Endian

Big Endian

LSByte

LSByte

Cache Memory
Address (1B)

10 Young Won Lim
6/2/16

Tag and Set Fields

8 sets 3-bit set field

4 sets 2-bit set field

2 sets 1-bit set field

1 set 0-bit set field

tag set word

Cache Memory
Address (1B)

11 Young Won Lim
6/2/16

Unit of Cache Memory Content

tag field of an address

A corresponding block of words

Tag Memory Data Memory

block data

block data

block data

block data

tag field of an address

tag field of an address

tag field of an address

Cache Line

Cache Line

Cache Line

Cache Line

Cache Memory
Address (1B)

12 Young Won Lim
6/2/16

CAM (Content Addressable Memory)

Cache Memory
Address (1B)

13 Young Won Lim
6/2/16

CAM (Content Addressable Memory)

Young Won Lim
6/2/16

References

[1] http://en.wikipedia.org/
[2] https://en.wikiversity.org/wiki/The_necessities_in_SOC_Design
[3] https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
[4] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
[5] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Architecture
[6] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Organization
[7] https://en.wikiversity.org/wiki/Understanding_Embedded_Software
[8] Digital Systems, Hill, Peterson, 1987

http://en.wikipedia.org/
https://en.wikiversity.org/wiki/The_necessities_in_Computer_Organization

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14

