
Young Won Lim
1/13/18

Monad Overview (3B)

Monad Overview (3B) 2 Young Won Lim
1/13/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Young Won Lim
1/13/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Monad Overview (3B) 4 Young Won Lim
1/13/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Monad Overview (3B) 5 Young Won Lim
1/13/18

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

Monad Overview (3B) 6 Young Won Lim
1/13/18

Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations

put :: s -> (State s) ()

putStr :: String -> IO ()

world ((), world)

s ((), s)

returning a function as a value

executable function

executing an action (effect-monad)

produce a result val-out-type

Monad Overview (3B) 7 Young Won Lim
1/13/18

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

where the return type is a type application:

a type with a parameter type

effect-monad

an executable function

giving information about which effects are possible

val-out-type

the argument of the executable function

the type of the result produced by the function

(the result of executing the function)

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations

put :: s -> (State s) ()

putStr :: String -> IO ()

s (t, s)

returning a function as a value

Monad Overview (3B) 8 Young Won Lim
1/13/18

put :: s -> State s ()

put :: s -> (State s) ()

one value input type s

the effect-monad State s

the value output type ()

the operation is used only for its effect;

the value delivered is uninteresting

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – put, putStr

Monad Overview (3B) 9 Young Won Lim
1/13/18

IO t and State s a types

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state,

a : the type of the produced result

s -> (a, s) : function type

 type IO t = World -> (t, World) type synonym
world (t, world)

s (a, s)

Monad Overview (3B) 10 Young Won Lim
1/13/18

Monad Definition

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Monad Overview (3B) 11 Young Won Lim
1/13/18

Maybe Monad Instance

instance Monad Maybe where

 return x = Just x

 Nothing >>= f = Nothing

 Just x >>= f = f x

 fail _ = Nothing

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Monad Overview (3B) 12 Young Won Lim
1/13/18

IO Monad Instance

instance Monad IO where

 m >> k = m >>= \ _ -> k

 return = returnIO

 (>>=) = bindIO

 fail s = failIO s

returnIO :: a -> IO a

returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k

 = IO $ \ s -> case m s of (# new_s, a #)

 -> unIO (k a) new_s

https://stackoverflow.com/questions/9244538/what-are-the-definitions-for-and-return-for-the-io-monad

Monad Overview (3B) 13 Young Won Lim
1/13/18

State Monad Instance

instance Monad (State s) where

return :: a -> State s a

return x = state (\ s -> (x, s))

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = State q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Monad Overview (3B) 14 Young Won Lim
1/13/18

The return function takes x

and gives back a function

that takes a World

and returns x along with the new, updated World (=World)

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO - return

 return x world = (x, world)

returnx

World (x, World)

Monad Overview (3B) 15 Young Won Lim
1/13/18

the expression (ioX >>= f) has

type World -> (t, World)

a function ioX that takes w0 of the type World,

which is used to extract x from its IO monad.

x gets passed to f, resulting in another IO monad,

which again is a function that takes w1 of the type World

and returns a y and a new, updated World.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO - >>=

the implementation of bind

Monad Overview (3B) 16 Young Won Lim
1/13/18

We give IO the World w0 :: World

we got back the World w1 :: World

from getting x out of its monad, x :: t

and the thing IO gives back to us is

the y with y :: t

a final version of the World w1 :: World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad >>= Implementation

the implementation of bind

Monad Overview (3B) 17 Young Won Lim
1/13/18

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad >>= Implementation

the implementation of bind

(–,w0) (x,w1) (y,w1)

(t,World) (t,World) (t,World)

first, execute the action

State updated

Result extracted

then, compute the new result

No State tansition

Result computed

Monad Overview (3B) 18 Young Won Lim
1/13/18

instance Monad IO where

 return x w0 = (x, w0)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation

Monad Overview (3B) 19 Young Won Lim
1/13/18

instance Monad IO where

 return x w0 = (x, w0)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX w0 (x, w1) w1 (y, w1)

f x

:: IO a :: IO b

:: a -> IO b

Monad Overview (3B) 20 Young Won Lim
1/13/18

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX :: IO a w0 :: World x :: a

f :: a -> IO b w1 :: World

ioX w0 :: IO a World (x, w1)

f x :: IO b

 f x w1 :: IO b World (y, w1)

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation

ioX w0 (x, w1) w1 (y, w1)

f x

:: IO a :: IO b

:: a -> IO b

Monad Overview (3B) 21 Young Won Lim
1/13/18

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX :: IO a x :: a

f :: a -> IO b w0 :: World w1 :: World

ioX w0 :: IO a World (x, w1)

f x :: a -> a -> IO b

 f x w1 :: IO b World (y, w1)

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation

ioX
f

 f x w1

 w0 (x, w1)
x

w1
 (y, w1)

let (x, w1) = ioX w0

binding

internal
variables

Monad Overview (3B) 22 Young Won Lim
1/13/18

IO Monad

 (>>=) :: IO a -> (a -> IO b) -> IO b

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

>>=1st arg

2nd arg

Return
value

1st arg

1st arg

Monad

2nd arg

Function Monad

return

ioX

f

Monad Overview (3B) 23 Young Won Lim
1/13/18

IO Monad

ioX w0 (x, w1)

 w1 (y, w1) f x

:: IO a

:: a -> IO b

>>=

ioX

 w0 (y, w1)

:: IO b

Monad Overview (3B) 24 Young Won Lim
1/13/18

instance Monad IO where

 return x world = (x, world)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO and Monad ST

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s

 in f x s'

Monad Overview (3B) 25 Young Won Lim
1/13/18

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

 >>= provides a means of sequencing state transformers:

st >>= f applies the state transformer st to an initial state s,

then applies the function f to the resulting value x

to give a second state transformer (f x),

which is then applied to the modified state s' to give the final result:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

State Transformers ST

(x,s') = st s

 f x s'

st >>= f = \s -> f x s'

where (x,s') = st s

st >>= f = \s -> (y,s')

where (x,s') = st s

 (y,s') = f x s'

Young Won Lim
1/13/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26

