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class Monad m where

    return :: a -> m a

    (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
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Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad    val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations

put :: s -> (State s) ( )

putStr :: String -> IO ( )

world (( ), world)

s (( ), s)

returning a function as a value  

executable function

executing an action (effect-monad)

produce a result  val-out-type
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val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad    val-out-type

where the return type is a type application: 

a type with a parameter type

effect-monad   

an executable function 

giving information about which effects are possible 

val-out-type

the argument of the executable function 

the type of the result produced by the function

(the result of executing the function )

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations

put :: s -> (State s) ( )

putStr :: String -> IO ( )

s (t, s)

returning a function as a value
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put :: s -> State s ( )

put :: s -> (State s) ( )

one value input type s

the effect-monad State s

the value output type ( ) 

the operation is used only for its effect; 

the value delivered is uninteresting

putStr :: String -> IO ( )

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – put, putStr
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IO t and State s a types 

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state, 

a : the type of the produced result

s -> (a, s) : function type

  type    IO t    =    World    ->    (t, World) type synonym
world (t, world)

s (a, s)
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Monad Definition

class Monad m where  

    return :: a -> m a  

    (>>=) :: m a -> (a -> m b) -> m b  

    (>>) :: m a -> m b -> m b  

    fail :: String -> m a  

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maybe Monad Instance

instance Monad Maybe where  

        return x = Just x  

        Nothing >>= f = Nothing  

        Just x >>= f  = f x  

        fail _ = Nothing  

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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IO Monad Instance

instance  Monad IO  where

    m >> k    = m >>= \ _ -> k

    return    = returnIO

    (>>=)     = bindIO

    fail s    = failIO s

returnIO :: a -> IO a

returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k 

   = IO $ \ s ->  case m s of (# new_s, a #) 

                   -> unIO (k a) new_s

https://stackoverflow.com/questions/9244538/what-are-the-definitions-for-and-return-for-the-io-monad
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State Monad Instance

instance Monad (State s) where

return :: a -> State s a

return x = state ( \ s -> (x, s) )

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

    p' = runState p        -- p' :: s -> (a, s)

    k' = runState . k      -- k' :: a -> s -> (b, s)

    q' s0 = (y, s2) where  -- q' :: s -> (b, s)

        (x, s1) = p' s0    -- (x, s1) :: (a, s)

        (y, s2) = k' x s1  -- (y, s2) :: (b, s)

    q = State q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State
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The return function takes x 

and gives back a function 

that takes a World 

and returns x along with the new, updated World (=World)

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO - return 

    return x world = (x, world)

returnx

World  (x, World) 
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the expression (ioX >>= f) has 

type World -> (t, World)

a function ioX that takes w0 of the type World,

which is used to extract x from its IO monad. 

x gets passed to f, resulting in another IO monad, 

which again is a function that takes w1 of the type World 

and returns a y and a new, updated World. 

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO - >>= 

the implementation of bind 
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We give IO the World w0 ::  World

we got back the World w1 ::  World 

from getting x out of its monad, x :: t

and the thing IO gives back to us is 

the y with y :: t

a final version of the World w1 ::  World 

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad >>= Implementation 

the implementation of bind 
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https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad >>= Implementation 

the implementation of bind 

(–,w0) (x,w1) (y,w1)

(t,World) (t,World) (t,World)

first, execute the action

State updated

Result extracted 

then, compute the new result

No State tansition

Result computed
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instance Monad IO where

    return x w0 = (x, w0)

    (ioX >>= f) w0  =

    let  (x, w1) = ioX w0

    in   f x w1  -- has type (t, World)

    type    IO t    =    World    ->    (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation 
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instance Monad IO where

    return x w0 = (x, w0)

    (ioX >>= f) w0  =

    let  (x, w1) = ioX w0

    in   f x w1  -- has type (t, World)

    type    IO t    =    World    ->    (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation 

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX  w0  (x, w1)   w1  (y, w1) 

f x

:: IO a :: IO b

:: a -> IO b
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ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX :: IO a w0 :: World x :: a 

f :: a -> IO b  w1 :: World

ioX w0 :: IO a World (x, w1)

f x ::  IO b

     f x w1 :: IO b World  (y, w1)

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation 

ioX  w0  (x, w1)   w1  (y, w1) 

f x

:: IO a :: IO b

:: a -> IO b
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ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX :: IO a x :: a 

f :: a -> IO b  w0 :: World w1 :: World

ioX w0 :: IO a World (x, w1)

f x :: a -> a -> IO b

     f x w1 :: IO b World  (y, w1)

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation 

ioX
f

    f x  w1

  w0  (x, w1) 
x

w1
 (y, w1) 

let  (x, w1) = ioX w0

binding

internal 
variables
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IO Monad

    (>>=)  ::    IO a     ->     (a -> IO b)     ->    IO b

    

    (ioX >>= f) w0  =

    let  (x, w1) = ioX w0

    in   f x w1  -- has type (t, World)

>>=1st arg

2nd arg

Return 
value

1st arg

1st arg

Monad 

2nd arg

Function Monad 

return

ioX

f
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IO Monad

ioX  w0  (x, w1) 

  w1  (y, w1) f x

:: IO a

:: a -> IO b

>>=

ioX

  w0  (y, w1) 

:: IO b
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instance Monad IO where

    return x world = (x, world)

    (ioX >>= f) w0  =

    let  (x, w1) = ioX w0

    in f x w1  -- has type (t, World)

 type    IO t    =    World    ->    (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO and Monad ST

instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s 

   in f x s'
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instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'

 >>= provides a means of sequencing state transformers: 

st >>= f applies the state transformer st to an initial state s, 

then applies the function f to the resulting value x 

to give a second state transformer (f x), 

which is then applied to the modified state s' to give the final result:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

State Transformers ST 

(x,s') = st s

 f x s'

st >>= f  =  \s -> f x s' 

where (x,s') = st s 

st >>= f  =  \s -> (y,s') 

where (x,s') = st s 

  (y,s') = f x s'
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