Propositional Logic – Semantics (3A)

Copyright (c) 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

Semantics

Gives meaning to the propositions

Consists of rules for assigning either the value **T** or **F** to every proposition

The truth value of a proposition

If a proposition has truth value **T**, we say it is true Otherwise, we say it is false

Semantic Rules

- 1. the logical value **True** ← the value **T** always the logical value **False** ← the value **F** always
- 2. Every atomic proposition ← a value T or F

The set of all these assignments constitues a model or possible world

All possible worlds (assignments) are **permissable**

- 3. The truth values of arbitrary propositions connected with **connectives** are given by the connective **truth tables**.
- 4. The truth value for **compound propositions** are determined <u>recursively</u> using the truth tables according to the following rules

(a) the grouping () has highest precedence

- (b) the precedence order : \neg , \land , \lor , \rightarrow , \leftrightarrow
- (c) binary connectives : from left to right

P	${\cal Q}$	$P \wedge Q$	$P \vee Q$	$P \underline{\vee} Q$	$P \underline{\wedge} Q$	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
Т	Т	Т	Т	F	Т	Т	Т	т
Т	F	F	Т	Т	F	F	Т	F
F	Т	F	Т	Т	F	т	F	F
F	F	F	F	F	Т	т	т	т

T = true, F = false \land = AND (logical conjunction) \lor = OR (logical disjunction) \bigvee = XOR (exclusive or) \land = XNOR (exclusive nor) \rightarrow = conditional "if-then" \leftarrow = conditional "if-then" \leftarrow = conditional "(then)-if" \iff biconditional or "if-and-only-if" is logically equivalent to \land : XNOR (exclusive nor).

Semantic Rule Purposes

The semantics for propositional logic

- assign truth values to all propositions
- could use different truth tables from the conventional ones
- but it must provide a way to reflect the real world
 - → to allow reasoning
- The purpose is to make statements about the real world
- and to reason with these statements
- the semantics must reflect the way humans reason with the statements in the world
- some difficulty with $A \rightarrow B$

What a proposition denote

A: It is raining.

B: Professor N is 5 feet tall.

Suppose that

It is **not** raining (A is false)

Professor N is 6 feet actually (B is false)

 $A \rightarrow B$ is true according to the truth table

Proposition A <u>denotes</u> it is raining currently.

Proposition A does not denote it is raining an hour ago, tomorrow, a year ago...

Proposition B <u>denotes</u> Professor N is 6 feet

Proposition B does not denote Professor N is 7 feet, 5 feet, ...

$A \rightarrow B$: if it is not raining currently (could rain vesterday),

Propositional hegiprofessor Semantics

8

What $A \rightarrow B$ denotes

A: It is raining. (false)

- B: Professor N is 5 feet tall. (false)
- $A \rightarrow B$: does not mean that

If it rains some day,

Then Professor N will be 5 feet.

Only concerns

The proposition that there is rain currently (false)

Suppose A \rightarrow B is true

After finding A is true, then B must be true

After finding A is false, then we do not know whether B is true or false

Suppose A \rightarrow B is true If A is true then B must be true

Suppose A \rightarrow B is false If A is true then B must be false

Suppose A \rightarrow B is true If A is false then we do not know whether B is true or false

А	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Semantics of Implication Rule

Suppose A \rightarrow B is true If B is true then A must be true

B implies A This is not what we want

А	В	A → B
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Semantics of Implication Rule

Suppose A \rightarrow B is true If A is false then B must be false

False A implies false B This is not what we want

А	В	A→B
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog