
Young Won Lim
10/22/23

Scope (1A)

Young Won Lim
10/22/23

 Copyright (c) 2023 - 2015 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Classes and Objects 3 Young Won Lim
10/22/23

Python Scope

A variable is only available
from inside the region it is created.

This is called scope.

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 4 Young Won Lim
10/22/23

Local Scope

A variable created inside a function
belongs to the local scope of that function,
and can only be used inside that function.

A variable created inside a function
is available inside that function:

def myfunc():
 x = 300
 print(x)

myfunc()

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 5 Young Won Lim
10/22/23

Function Inside Function

the variable x is not available outside the function,
but it is available for any function inside the function:

The local variable can be accessed
from a function within the function:

def myfunc():
 x = 300
 def myinnerfunc():
 print(x)
 myinnerfunc()

myfunc()

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 6 Young Won Lim
10/22/23

Global Scope

A variable created in the main body of the Python code
is a global variable and belongs to the global scope.

Global variables are available
from within any scope, global and local.

A variable created outside of a function is
global and can be used by anyone:

x = 300

def myfunc():
 print(x)

myfunc()

print(x)

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 7 Young Won Lim
10/22/23

Naming Variables

If you operate with the same variable name
inside and outside of a function,
Python will treat them as two separate variables,
one available in the global scope (outside the function) and
one available in the local scope (inside the function):

The function will print the local x (= 300),
 and then the code will print the global x (= 200):

x = 300

def myfunc():
 x = 200
 print(x) # local x (=200)

myfunc()

print(x) # global x (= 300)

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 8 Young Won Lim
10/22/23

Global Keyword (1)

If you need to create a global variable,
but are stuck in the local scope,
you can use the global keyword.

The global keyword makes the variable global.

If you use the global keyword,
he variable belongs to the global scope:

def myfunc():
 global x
 x = 300 # global x (= 300)

myfunc()

print(x) # global x (= 300)

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 9 Young Won Lim
10/22/23

Global Keyword (2)

Also, use the global keyword
if you want to make a change
to a global variable inside a function.

To change the value of a global variable
inside a function, refer to the variable
by using the global keyword:

x = 300

def myfunc():
 global x
 x = 200

myfunc()

print(x) # global x (= 200)

https://www.w3schools.com/python/python_scope.asp

Classes and Objects 10 Young Won Lim
10/22/23

Variable Scope

how to initialize a variable.

the scope of these variables

Not all variables can be accessed
from anywhere in a program.

The part of a program where a variable is accessible
is called its scope.

here are four major types of variable scope and
is the basis for the LEGB rule.

LEGB stands for Local -> Enclosing -> Global -> Built-in.

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 11 Young Won Lim
10/22/23

Local Scope

Whenever you define a variable within a function,
its scope lies ONLY within the function.

It is accessible from the point at which it is defined
until the end of the function and

exists for as long as the function is executing

Which means its value cannot be changed
or even accessed from outside the function.

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 12 Young Won Lim
10/22/23

Enclosing Scope

What if we have a nested function
(function defined inside another function)?

def outer():
 first_num = 1
 def inner():
 second_num = 2
 # Print statement 1 - Scope: Inner
 print("first_num from outer: ", first_num)
 # Print statement 2 - Scope: Inner
 print("second_num from inner: ", second_num)
 inner()
 # Print statement 3 - Scope: Outer
 print("second_num from inner: ", second_num)

outer()

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 13 Young Won Lim
10/22/23

Enclosing Scope

first_num from outer: 1
second_num from inner: 2

NameError Traceback (most recent call last)

<ipython-input-4-13943a1eb01e> in <module>
 11 print("second_num from inner: ", second_num)
 12
---> 13 outer()

<ipython-input-4-13943a1eb01e> in outer()
 9 inner()
 10 # Print statement 3 - Scope: Outer
---> 11 print("second_num from inner: ", second_num)
 12
 13 outer()

NameError: name 'second_num' is not defined

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 14 Young Won Lim
10/22/23

Enclosing Scope

an error

because you cannot access second_num from outer()
(# Print statement 3). It is not defined within that function.

However, you can access first_num from inner()
(# Print statement 1),
because the scope of first_num is larger, it is within outer().
This is an enclosing scope.

Outer's variables have a larger scope and
can be accessed from the enclosed function inner().

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 15 Young Won Lim
10/22/23

Global Scope

Whenever a variable is defined outside any function,
it becomes a global variable, and its scope is
anywhere within the program.

Which means it can be used by any function.

greeting = "Hello"

def greeting_world():
 world = "World"
 print(greeting, world)

def greeting_name(name):
 print(greeting, name)

greeting_world()
greeting_name("Samuel")

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 16 Young Won Lim
10/22/23

Built-in Scope

This is the widest scope

All the special reserved keywords
are under built-in scope.

We can call the keywords
anywhere within our program
without having to define them before use.

keywords are simply special reserved words.

They are kept for specific purposes
and cannot be used for any other purpose in the program.

These are the keywords in Python:

Keywords in Python

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 17 Young Won Lim
10/22/23

Python Keywords

False class finally is return
None continue for lambda try
True def from nonlocal while
And del global not with
as elif if or yield
assert else import pass
break except in raise

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 18 Young Won Lim
10/22/23

LEGB Rule

LEGB (Local -> Enclosing -> Global -> Built-in)
is the logic followed by a Python interpreter
when it is executing your program.

Let's say you're calling print(x) within inner(),
which is a function nested in outer().

Then Python will first look
if "x" was defined locally within inner().

If not, the variable defined in outer() will be used.
This is the enclosing function.

If it also wasn't defined there,
the Python interpreter will go up another level
- to the global scope.

Above that, you will only find the built-in scope,
which contains special variables reserved for Python itself.

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 19 Young Won Lim
10/22/23

LEGB Rule

Global scope
X = 0

def outer():

 # Enclosed scope
 X = 1

 def inner():

 # Local scope
 X = 2

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 20 Young Won Lim
10/22/23

Global scope example

to change the global variable greeting ("Hello")
to set a new value ("Hi")

greeting = "Hello"

def change_greeting(new_greeting):
 greeting = new_greeting

def greeting_world():
 world = "World"
 print(greeting, world)

change_greeting("Hi")
greeting_world()

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 21 Young Won Lim
10/22/23

Global scope example

because when we set the value of greeting to "Hi",
it created a new local variable greeting
in the scope of change_greeting().

It did not change anything for the global greeting.

This is where the global keyword comes in handy.

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 22 Young Won Lim
10/22/23

Global keyword example

With global keyword, can use the globally defined variable
instead of locally creating one.

greeting = "Hello"

def change_greeting(new_greeting):
 global greeting
 greeting = new_greeting

def greeting_world():
 world = "World"
 print(greeting, world)

change_greeting("Hi")
greeting_world()

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 23 Young Won Lim
10/22/23

Non-local keyword example

The nonlocal keyword is useful in nested functions.
It causes the variable to refer to the previously bound variable
in the closest enclosing scope.

it will prevent the variable from trying to bind locally first,
and force it to go a level 'higher up'.

def outer():
 first_num = 1
 def inner():
 nonlocal first_num
 first_num = 0
 second_num = 1
 print("inner - second_num is: ", second_num)
 inner()
 print("outer - first_num is: ", first_num)

outer()

https://www.datacamp.com/tutorial/scope-of-variables-python

Classes and Objects 24 Young Won Lim
10/22/23

Scoping rule (1)

Actually, a concise rule for Python Scope resolution,
from Learning Python, 3rd. Ed.

these rules are specific to variable names, not attributes.
If you reference it without a period, these rules apply.

LEGB Rule

 Local
Names assigned in any way within a function (def or lambda),
and not declared global in that function

 Enclosing-function
Names assigned in the local scope of any and all
statically enclosing functions (def or lambda), from inner to outer

 Global (module)
Names assigned at the top-level of a module file,
or by executing a global statement in a def within the file

 Built-in (Python)
Names preassigned in the built-in names module:
open, range, SyntaxError, etc

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 25 Young Won Lim
10/22/23

Scoping rule (2)

code1
class Foo:
 code2
 def spam():
 code3
 for code4:
 code5
 x()

The for loop does not have its own namespace.
In LEGB order, the scopes would be

 L: Local in def spam (in code3, code4, and code5)
 E: Any enclosing functions (if the whole example were in another def)
 G: Were there any x declared globally in the module (in code1)?
 B: Any builtin x in Python.

x will never be found in code2
(even in cases where you might expect it would, see Antti's answer or here).

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 26 Young Won Lim
10/22/23

Scoping rule (3-1)

from __future__ import print_function # for python 2 support

x = 100
print("1. Global x:", x)
class Test(object):
 y = x
 print("2. Enclosed y:", y)
 x = x + 1
 print("3. Enclosed x:", x)

 def method(self):
 print("4. Enclosed self.x", self.x)
 print("5. Global x", x)
 try:
 print(y)
 except NameError as e:
 print("6.", e)

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 27 Young Won Lim
10/22/23

Scoping rule (3-2)

 def method_local_ref(self):
 try:
 print(x)
 except UnboundLocalError as e:
 print("7.", e)
 x = 200 # causing 7 because has same name
 print("8. Local x", x)

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 28 Young Won Lim
10/22/23

Scoping rule (4)

inst = Test()
inst.method()
inst.method_local_ref()

output:

1. Global x: 100
2. Enclosed y: 100
3. Enclosed x: 101
4. Enclosed self.x 101
5. Global x 100
6. global name 'y' is not defined
7. local variable 'x' referenced before assignment
8. Local x 200

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 29 Young Won Lim
10/22/23

Scoping rule (5-1)

Essentially, the only thing in Python
that introduces a new scope is a function definition.

Classes are a bit of a special case
in that anything defined directly in the body
is placed in the class's namespace,
but they are not directly accessible
from within the methods (or nested classes) they contain.

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 30 Young Won Lim
10/22/23

Scoping rule (5-2)

In your example there are only 3 scopes
where x will be searched in:

spam's scope - containing everything defined
in code3 and code5 (as well as code4, your loop variable)

The global scope - containing everything defined in code1,
as well as Foo (and whatever changes after it)

The builtins namespace. A bit of a special case -
this contains the various Python builtin functions and types
such as len() and str().
Generally this shouldn't be modified by any user code,
so expect it to contain the standard functions and nothing else.

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

code1
class Foo:
 code2
 def spam():
 code3
 for code4:
 code5
 x()

Classes and Objects 31 Young Won Lim
10/22/23

Scoping rule (6)

More scopes only appear
when you introduce a nested function (or lambda).

These will behave pretty much as you'd expect however.

The nested function can access everything in the local scope,
as well as anything in the enclosing function's scope.

def foo():
 x=4
 def bar():
 print x # Accesses x from foo's scope
 bar() # Prints 4
 x=5
 bar() # Prints 5

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 32 Young Won Lim
10/22/23

Scoping rule (7)

Restrictions:

Variables in scopes other than the local function's variables can be accessed,
but can't be rebound to new parameters without further syntax.

Instead, assignment will create a new local variable I
nstead of affecting the variable in the parent scope.

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 33 Young Won Lim
10/22/23

Scoping rule (7)

global_var1 = []
global_var2 = 1

def func():
 # This is OK: It's just accessing, not rebinding
 global_var1.append(4)

 # This won't affect global_var2. Instead it creates a new variable
 global_var2 = 2

 local1 = 4
 def embedded_func():
 # Again, this doen't affect func's local1 variable. It creates a
 # new local variable also called local1 instead.
 local1 = 5
 print local1

 embedded_func() # Prints 5
 print local1 # Prints 4

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 34 Young Won Lim
10/22/23

Scoping rule (8)

In order to actually modify the bindings of global variables
from within a function scope, you need to specify
that the variable is global with the global keyword. Eg:

global_var = 4

def change_global():
 global global_var
 global_var = global_var + 1

Currently there is no way to do the same
for variables in enclosing function scopes,

but Python 3 introduces a new keyword, "nonlocal"
which will act in a similar way to global, but for nested function scopes.

https://stackoverflow.com/questions/291978/short-description-of-the-scoping-rules

Classes and Objects 35 Young Won Lim
10/22/23

Non-local (1)

Definition and Usage

The nonlocal keyword is used to work with variables inside nested functions, where the variable should
not belong to the inner function.

Use the keyword nonlocal to declare that the variable is not local.

https://www.w3schools.com/python/ref_keyword_nonlocal.asp

Classes and Objects 36 Young Won Lim
10/22/23

Non-local (2)

Make a function inside a function, which uses the variable x as a non local variable:

def myfunc1():
 x = "John"
 def myfunc2():
 nonlocal x
 x = "hello"
 myfunc2()
 return x

print(myfunc1())

https://www.w3schools.com/python/ref_keyword_nonlocal.asp

Classes and Objects 37 Young Won Lim
10/22/23

Non-local (2)

Same example as above, but without the nonlocal keyword:

def myfunc1():
 x = "John"
 def myfunc2():
 x = "hello"
 myfunc2()
 return x

print(myfunc1())

https://www.w3schools.com/python/ref_keyword_nonlocal.asp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

