LU Factorization

Copyright (c) 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$\left(\begin{array}{ccc|c}\oplus 2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}\oplus 1 & +1 / 2 & -1 / 2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right] \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 / 2 & +1 / 2 & +1 \\ 0 & +2 & +1 & +5\end{array}\right]$
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5\end{array}\right)$
Backward Phase - Guass-Jordan Elimination
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & -+1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

Getting Upper Triangular Matrix

Upper Triangular

$$
\boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{U}
$$

Getting the original matrix

$$
\begin{aligned}
& \boldsymbol{E}_{4}^{-1} \quad \boldsymbol{E}_{5}^{-1} \quad \boldsymbol{E}_{6}^{-1} \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \\
& \left(\begin{array}{lll}
\boldsymbol{E}_{1}^{-1} & \\
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left[\begin{array}{ccc}
\boldsymbol{E}_{2}^{-1} \\
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\boldsymbol{E}_{3}^{-1} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right) /\left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \\
& \boldsymbol{A}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U}
\end{aligned}
$$

$\boldsymbol{E}_{\boldsymbol{i}}$ and $\boldsymbol{E}_{\boldsymbol{i}}^{-1}$ examples (1)

(\%il) E1 : matrix([1/2, 0, 0], [0, 1, 0], [0, 0, 1]);
$(\% 01)\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(\%i2) E2 : matrix([1, 0, 0], [3, 1, 0], [0, 0, 1]);
$(\% 02)\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(\%i3) E3 : matrix([1, 0, 0], [0, 1, 0], [2, 0, 1]);
$(\% 03)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$
(\%i7) E1_1 : invert(E1);
$(\% 07)\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(\%i8) E2_1 : invert(E2);
$(\% 08)\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(\%i9) E3_1 : invert(E3);
$(\% 09)\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$

$$
\boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{U} \quad \boldsymbol{A}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U}
$$

$\boldsymbol{E}_{\boldsymbol{i}}$ and $\boldsymbol{E}_{\boldsymbol{i}}^{-1}$ examples (1)

(\%i4) E4 : matrix([1, 0, 0], [0, 2, 0], [0, 0, 1]);
$(\% 04)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
(\%i5) E5 : matrix([1, 0, 0], [0, 1, 0], [0, -2, 1]);
$(\% 05)\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$
(\%i6) E6 : matrix([1, 0, 0], [0, 1, 0], [0, 0, -1]);
$(\% 06)\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(\%i10) E4_1 : invert(E4);
$(\% 010)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$
(\%i11) E5_1 : invert(E5);
(\%011) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]$
(\%i12) E6_1 : invert(E6);
(\%०12) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$

$$
\boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{U} \quad \boldsymbol{A}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U}
$$

$\mathbf{A}=\mathbf{L} \boldsymbol{U}$ examples

(\%i13) L_1 : E6.E5.E4.E3.E2.E1;
(\%013) $\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 3 & 2 & 0 \\ 5 & 4 & -1\end{array}\right]$

$$
\begin{aligned}
& \text { (\%i18) L_1.A; } \\
& \text { (\%i22) U : L_1.A; } \\
& \text { (\%022) }\left[\begin{array}{ccc}
1 & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \text { (\%i23) L.U; } \\
& \text { (\%023) }\left\lfloor\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right\rfloor
\end{aligned}
$$

(\%i14) L : invert(L_1);
$(\% 014)\left[\begin{array}{ccc}2 & 0 & 0 \\ -3 & \frac{1}{2} & 0 \\ -2 & 2 & -1\end{array}\right]$
(\%i16) A : matrix([2, 1, -1], [-3, -1, 2], [-2, 1, 2]);
(\%o16) $\left\lfloor\begin{array}{ccc}2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2\end{array}\right\rfloor$

$$
\boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{U} \quad \boldsymbol{A}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U}
$$

Elementary Matrices

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Triangular and Elementary Matrices

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

For all lower triangular \boldsymbol{E}_{i} 's

If every elementary matrix involved in the Forward Phase - Gaussian Elimination
is a lower triangular matrix

Can get \boldsymbol{L} from the $\boldsymbol{E}_{\boldsymbol{i}}$'s

If every elementary matrix involved in the

$\boldsymbol{E}_{7} \boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{U}$

$$
\boldsymbol{A}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}
$$

$$
\begin{aligned}
& \boldsymbol{E}_{7} \boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1}=\boldsymbol{L}^{-1} \\
& \boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1}=\boldsymbol{L}
\end{aligned}
$$

Gaussian Elimination and LU Decomposition

If every elementary matrix involved in the Forward Phase - Gaussian Elimination

$$
\left.\begin{array}{ll}
A_{x}=b & (A \mid b
\end{array}\right) \quad \begin{aligned}
L^{-1} A_{x} & =L^{-1} b \\
U \boldsymbol{b} & =y
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{E}_{7} \boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1}=\boldsymbol{L}^{-1} \\
& \boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1}=\boldsymbol{L}
\end{aligned}
$$

LU Decomposition

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U} \quad \text { If } \mathrm{A} \text { is } \mathrm{LU} \text { factorizable } \\
& \boldsymbol{A x}=\boldsymbol{b} \\
& \boldsymbol{L U X}=\boldsymbol{b}
\end{aligned}
$$

$\boldsymbol{L} \boldsymbol{y}=\boldsymbol{b} \quad$ First, find y

$$
\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y} \quad \text { Next, find } x
$$

$$
\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1}=\boldsymbol{L}
$$

Pulse

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"
[3] Anton \& Rorres, "Elementary Linear Algebra"

