LU Factorization

Copyright (c) 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase – Gaussian Elimination

Backward Phase – Guass-Jordan Elimination

Getting Upper Triangular Matrix

 $\boldsymbol{E}_{6} \boldsymbol{E}_{5} \boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A} = \boldsymbol{U}$

Getting the original matrix

$$\boldsymbol{A} = \boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U}$$

LU Factorization

E_i and E_i^{-1} examples (1)

```
(%i7) E1_1 : invert(E1);
(%il) E1 : matrix([1/2, 0, 0], [0, 1, 0], [0, 0, 1]);
                                                                        200
      \frac{1}{2} 0 0
                                                                       0 1 0
                                                                  (%07)
(%01) 0 1 0
                                                                        001
      001
                                                                  (%i8) E2 1 : invert(E2);
(%i2) E2 : matrix([1, 0, 0], [3, 1, 0], [0, 0, 1]);
                                                                         1 0 0
      100
                                                                  (%08) -3 1 0
      3 1 0
(%02)
                                                                         0 0 1
      001
                                                                  (%i9) E3 1 : invert(E3);
(%i3) E3 : matrix([1, 0, 0], [0, 1, 0], [2, 0, 1]);
                                                                  (%09)
(%09)
-2 0 1
      100
(%03) 0 1 0
      201
```

 $E_{6} E_{5} E_{4} E_{3} E_{2} E_{1} A = U$ $A = E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1} E_{7}^{-1} U$

LU Factorization

E_i and E_i^{-1} examples (1)

(%i4)	E4 : matrix([1, 0, 0], [0, 2, 0], [0, 0, 1]);	<pre>(%i10) E4_1 : invert(E4);</pre>
		100
(%04)	0 2 0	(%010) 0 ¹ / ₋ 0
	0 0 1	2
(%i5)	E5 : matrix([1, 0, 0], [0, 1, 0], [0, -2, 1]);	
		(%i11) E5_1 : invert(E5);
(%05)	0 1 0	100
(1805)	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$	(%011) 0 1 0
(%i6)	E6 : matrix([1, 0, 0], [0, 1, 0], [0, 0, -1]);	[0 2 1]
		<pre>(%i12) E6_1 : invert(E6);</pre>
(%06)	0 1 0	100
	$\left[0 0 -1 \right]$	(%012) 0 1 0
		Θ Θ -1

 $E_{6} E_{5} E_{4} E_{3} E_{2} E_{1} A = U$ $A = E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1} E_{7}^{-1} U$

A = **LU** examples

(%i13) L_1 : E6.E5.E4.E3.E2.E1;	(%i18) L_1.A;
$ \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 3 & 2 & 0 \end{pmatrix} $	$(\%018) \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 1 \end{bmatrix}$
5 4 -1	0 0 1
(%i14) L : invert(L_1);	(%i22) U : L_1.A;
	$\begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$
$(\$014) -3 \frac{1}{2} 0$	(%022) 0 1 1
-2 2 -1	0 0 1
(%i16) A : matrix([2, 1, -1], [-3, -1, 2], [-2, 1, 2]);	(%i23) L.U;
2 1 -1	2 1 -1
(%016) -3 -1 2	(%023) -3 -1 2
-2 1 2	-2 1 2

 $E_{6} E_{5} E_{4} E_{3} E_{2} E_{1} A = U$ $A = E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1} E_{7}^{-1} U$

Elementary Matrices

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Triangular and Elementary Matrices

LU Factorization

For all lower triangular **E**,'s

If every elementary matrix involved in the Forward Phase – <u>Gaussian Elimination</u> is a lower triangular matrix

Can get *L* from the *E*, 's

If every elementary matrix involved in the Forward Phase – <u>Gaussian Elimination</u> is a lower triangular matrix

$$\boldsymbol{E}_7 \; \boldsymbol{E}_6 \; \boldsymbol{E}_5 \; \boldsymbol{E}_4 \; \boldsymbol{E}_3 \; \boldsymbol{E}_2 \; \boldsymbol{E}_1 \; \boldsymbol{A} \; = \; \boldsymbol{U}$$

$$\boldsymbol{A} = \boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{E}_{4}^{-1} \boldsymbol{E}_{5}^{-1} \boldsymbol{E}_{6}^{-1} \boldsymbol{E}_{7}^{-1} \boldsymbol{U} = \boldsymbol{L} \boldsymbol{U}$$

$$E_{7} E_{6} E_{5} E_{4} E_{3} E_{2} E_{1} = L^{-1}$$
$$E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1} E_{7}^{-1} = L$$

Gaussian Elimination and LU Decomposition

If every elementary matrix involved in the Forward Phase – <u>Gaussian Elimination</u>

$$\begin{bmatrix} \mathbf{E}_7 \ \mathbf{E}_6 \ \mathbf{E}_5 \ \mathbf{E}_4 \ \mathbf{E}_3 \ \mathbf{E}_2 \ \mathbf{E}_1 \end{bmatrix} = \mathbf{L}^{-1}$$
$$\begin{bmatrix} \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \mathbf{E}_3^{-1} \mathbf{E}_4^{-1} \mathbf{E}_5^{-1} \mathbf{E}_6^{-1} \mathbf{E}_7^{-1} \end{bmatrix} = \mathbf{L}$$

LU Decomposition

A = LU If A is LU factorizable Ax = b LUx = bFirst, find y Ux = y Next, find x

$$E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}E_6^{-1}E_7^{-1} = L$$

Pulse

References

- [1] http://en.wikipedia.org/
- [2] Anton & Busby, "Contemporary Linear Algebra"
- [3] Anton & Rorres, "Elementary Linear Algebra"