First Order Logic – Implication (4A)

pyright (c) 2016 - 2017 Young W. Lim.	
rmission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any lat ion published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is uded in the section entitled "GNU Free Documentation License".	er S
se send corrections (or suggestions) to youngwlim@hotmail.com.	
document was produced by using LibreOffice	

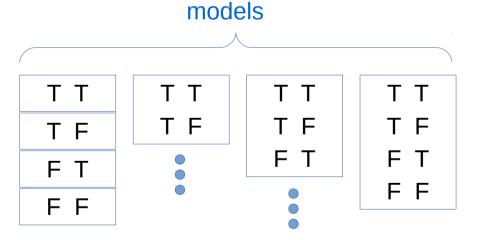
Based on

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

PL: A Model

A model or a possible world:


Every atomic proposition is assigned a value T or F

The set of all these assignments constitutes A model or a possible world

All possible worlds (assignments) are permissiable

Α	В	A ∧ B	$A \Lambda B \Rightarrow A$
Т	T	Т	Т
T	F	F	Т
F	T	F	Т
F	F	F	Т

Every atomic proposition : A, B

PL: Interpretation

An **interpretation** of a formal system is the assignment of meanings to the symbols, and **truth values** to the **sentences** of a formal system.

The study of interpretations is called formal semantics

Giving an <u>interpretation</u> is synonymous with constructing a <u>model</u>.

An interpretation is expressed in a metalanguage, which may itself be a formal language, and as such itself is a syntactic entity.

https://en.wikipedia.org/wiki/Syntax_(logic)#Syntactic_consequence_within_a_formal_system

PL: Material Implication vs Logical implication

Given two propositions A and B,

If $A \Rightarrow B$ is a tautology

It is said that A logically implies B $(A \Rightarrow B)$

Material Implication $A \Rightarrow B$ (not a tautology)

Logical Implication $A \Rightarrow B$ (a tautology)

Α	В	A⇒B
Т	Т	Т
Т	F	F
F	Т	Т
F	F	T

Α	В	А⋀В	A ∧ B⇒	Α	•
Т	Т	T	T		
T	F	F	Т		tautology
F	Т	F	Т		taatology
<u></u> F	F	F	T		

PL: Entailment

if $A \rightarrow B$ holds in every model then $A \models B$, and conversely if $A \models B$ then $A \rightarrow B$ is true in every model

any model that makes A \(\mathbb{A} \) B true

also makes A true $A \land B \models A$

No case : True \Rightarrow False

Α	В	A⇒B
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Α	В	АЛВ	$A \Lambda B \Rightarrow A$
T	Т	Т	T
T	F	F	Т
F	Т	F	Т
<u>F</u>	F	F	T

Entailment $A \land B \models A$, or $A \land B \Rightarrow A$

PL: Validity and Soundness (1)

An argument form is **valid** if and only if **whenever** the **premises** are **all true**, then **conclusion** is **true**. An argument is valid if its argument form is valid.

```
If premises: true then conclusion: true

false true
false
false

true then never false
```

An argument is **sound** if and only if it is **valid** and all its **premises** are true.

```
Always premises : true  therefore conclusion : false
```

http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument

PL: Validity and Soundness (2)

A deductive argument is said to be **valid** if and only if

it takes a form that makes it *impossible* for the premises to be **true** and the conclusion nevertheless to be **false**.

Otherwise, a deductive argument is said to be **invalid**. for the **premises** to be **true** and the **conclusion** is **false**.

A deductive argument is **sound** if and only if it is both **valid**, and all of its premises are **actually true**. Otherwise, a deductive argument is **unsound**.

```
Always premises : true  therefore conclusion : false
```

http://www.iep.utm.edu/val-snd/

PL: Validity and Soundness (3)

Α	В	A⇒B	$A \wedge (A \Rightarrow B)$	$A \wedge (A \Rightarrow B) \Rightarrow B$	
Т	Т	Т	Т	Т	
Т	F	F	F	Т	> valid
F	Т	Т	F	Т	Valid
F	F	Т	F	Т	.)

If premises: true then never conclusion: false

	∧ (A⇒B) ⇒ B	⇒B) .	A∧(A=	A⇒B	В	Α
sound	▶ T		Т	Т	Т	Т
	Т		F	F	F	Т
	Т		F	Т	Т	F
	T		F	T	F	F

Always premises: true therefore conclusion: true

http://www.iep.utm.edu/val-snd/

Formulas and Sentences

An formula

- A atomic formula
- The operator ¬ followed by a **formula**
- Two formulas separated by Λ , V, \Rightarrow , \Leftrightarrow
- A quantifier following by a variable followed by a formula

A sentence

A formula with no free variables

```
\forall x \text{ love}(x,y): free variable y: not a sentence
```

 $\forall x \text{ tall}(x)$: no free variable : a sentence

Interpretation

an interpretation

- (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>. Normally, every entity is assigned to a constant symbol.
- (b) for each **function**, an <u>entity</u> is assigned to each possible <u>input of entities</u> to the **function**
- (c) the predicate '**True**' is always assigned the value T
 The predicate '**False**' is always assigned the value F
- (d) for every other **predicate**, the value T or F is assigned to each possible <u>input of entities</u> to the **predicate**

Satisfiable

If sentence s has value T under interpretation I:

I satisfies s $I \models s$

A sentence is **satisfiable** if there is <u>some</u> interpretation under which it has value T

A formula that contains <u>free variables</u> is **satisfied** by an interpretation if the formula has value T <u>regardless</u> of which individuals from the domain of discourse are assigned to its <u>free variables</u>

Valid

A formula is **valid** if it is **satisfied** by *every* interpretation

Every tautology is a valid formula

A **valid** sentence: human(John) **V** ¬human(John)

A **valid** sentence: $\exists x \text{ (human(x) } \lor \neg \text{human(x)}$

A **valid** formula: loves(John, y) $\lor \neg loves(John, y)$

True regardless of which individual

in the domain of discourse is assigned to y This formula is true in every interpretation

Contradiction

A sentence is a **contradiction** if there is **no** interpretation that satisfies it

 $\exists x (human(x) \land \neg human(x)$

not satisfiable under <u>any</u> interpretation

Logical Implication

```
Given tow formulas A and B, if A \Rightarrow B is valid:

A logically implies B

A \Rightarrow B
human(John) \land (human(John) \Rightarrow mortal(John)) \Rightarrow mortal(John)

valid if it is satisfied by every interpretation
```

Logical Equivalence

```
Given tow formulas A and B, if A ⇔ B is valid:

A is logically equivalent B A ≡ B

( human(John) ⇒ mortal(John) ) ≡ (¬ human(John) ∨ mortal(John) )

valid if it is satisfied by every interpretation
```

Some Logical Equivalences

A and B are **variables** representing *arbitrary predicates* A and B could have other arguments besides x

$$\neg\exists x \ A(x) \equiv \forall x \ \neg A(x)$$
 $\neg\forall x \ A(x) \equiv \exists x \ \neg A(x)$

$$\exists x \ (A(x) \ \lor \ B(x)) \equiv \exists x \ A(x) \ \lor \ \exists x \ B(x)$$

$$\forall x \ (A(x) \ \land \ B(x)) \equiv \forall x \ A(x) \ \land \ \forall x \ B(x)$$

$$\forall x \ A(x) \equiv \forall y \ A(y)$$

$$\exists x \ A(x) \equiv \exists y \ A(y)$$

References

[1]	en.wikipedia.org
[2]	en.wiktionary.org
[3]	U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
[4]	http://www.learnprolognow.org/ Learn Prolog Now!
[5]	http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6]	www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7]	www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8]	http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolo