Random Processes

Young W Lim

Apr 19, 2023

Copyright (c) 2023-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Random Variables

(2) Random Processes

Random Variable Definition

A random variable

a function over a sample space $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$

$$
\begin{aligned}
& s \rightarrow X(s) \\
& x=X(s)
\end{aligned}
$$

a function of a possible outcome s of an experiment

Random Variable Definition

A random variable

- a random variable : a capital letter X
- a particular value : a lowercase letter x
- a sample space $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$

$$
s \rightarrow X(s)
$$

- an outcome (an element of S): s

$$
s \rightarrow x
$$

Understanding Random Variables (1)

- random variables are used to quantify outcomes of a random occurrence, and therefore, can take on many values.
- random variables are required to be measurable and are typically real numbers.
for example, the letter X may be designated to represent the sum of the resulting numbers after three dice are rolled.
therefore, X could be $3(1+1+1), 18(6+6+6)$,
or somewhere between 3 and 18
https://www.investopedia.com/terms/r/random-variable.asp

Understanding Random Variables (2)

- A random variable is different from an algebraic variable.
- The variable in an algebraic equation is an unknown value that can be calculated.
- The equation $10+x=13$ shows that we can calculate the specific value for \times which is 3 .
- a random variable has a set of values, and any of those values could be the resulting outcome as seen in the example of the dice above.
https://www.investopedia.com/terms/r/random-variable.asp

Understanding Random Variables (3)

- A typical example of a random variable is the outcome of a coin toss.
- Consider a probability distribution in which the outcomes of a random event are not equally likely to happen.
- If the random variable Y is the number of heads we get from tossing two coins, then Y could be 0,1 , or 2 .
(no heads, one head, or both heads)
https://www.investopedia.com/terms/r/random-variable.asp

Understanding Random Variables (4)

- Let the random variable Y be the number of heads of tossing two coins
- the two coins land in four different ways:

TT, HT, TH, and HH.

- the $P(Y=0)=1 / 4$ since we have one chance of getting no heads (i.e., two tails [TT] when the coins are tossed).
- the $P(Y=2)=1 / 4$: the probability of getting two heads (HH)
- getting one head has a likelihood of occurring twice: in HT and TH. In this case, $P(Y=1)=2 / 4=1 / 2$.
https://www.investopedia.com/terms/r/random-variable.asp

Formal definition of a random variable (1)

- A random variable X is a measurable function $X: \Omega \rightarrow E$ from a set of possible outcomes Ω to a measurable space E.
- The technical axiomatic definition requires
Ω to be a sample space of a probability triple (Ω, \mathscr{F}, P)
- A random variable is often denoted by capital roman letters such as X, Y, Z, T. https://en.wikipedia.org/wiki/Random_variable

Formal definition of a random variable (2)

- a measurable function $X: \Omega \rightarrow E$ from a set of possible outcomes Ω to a measurable space E.
- a sample space of a probability triple (Ω, \mathscr{F}, P)
- The probability that X takes on a value in a measurable set $S \subseteq E$ is written as $P(X \in S)=P(\{\omega \in \Omega \mid X(\omega) \in S\})$
https://en.wikipedia.org/wiki/Random_variable

Random variable example

$$
\text { Sample Space } \quad \text { Random Variable } \quad \text { Probability }
$$

This graph shows how random variable is a function from all possible outcomes to real values.
It also shows how random variable is used for defining probability mass functions.
https://en.wikipedia.org/wiki/Random_variable

Probability Space (1)

a probability space or a probability triple (Ω, \mathscr{F}, P) is a mathematical construct that provides a formal model of a random process or "experiment".

- For example, one can define a probability space which models the throwing of a die
https://en.wikipedia.org/wiki/Probability_space

Probability Space (2)

A probability space consists of three elements (Ω, \mathscr{F}, P)

- A sample space, Ω the set of all possible outcomes.
- An event space
a set of events \mathscr{F}, an event is a set of outcomes in the sample space
- A probability function, P assigns each event in the event space a probability, which is a number between 0 and 1 .
https://en.wikipedia.org/wiki/Probability_space

Probability Space (3)

In the example of the throw of a standard die,

- we would take the sample space to be $\{1,2,3,4,5,6\}$.
- For the event space, we could simply use the set of all subsets of the sample space,
- simple events such as $\{5\}$ ("the die lands on 5 "),
- as well as complex events such as $\{2,4,6\}$ ("the die lands on an even number").
- Finally, for the probability function, we would map each event to the number of outcomes in that event divided by 6
- so for example, $\{5\}$ would be mapped to $1 / 6$, and $\{2,4,6\}$ would be mapped to $3 / 6=1 / 2$.
https://en.wikipedia.org/wiki/Probability_space

Random Process (1)

A random process

a function of both outcome s and time t

$$
X(t, s)
$$

assigning a time function to every outcome s_{i}

$$
s_{i} \rightarrow x\left(t, s_{i}\right)
$$

Random Process (2)

A random process

the family of such time functions is called a random process

$$
\begin{aligned}
x\left(t, s_{i}\right) & =X\left(t, s_{i}\right) \\
x(t, s) & =X(t, s)
\end{aligned}
$$

Random Process (3)

We have seen that a random variable X is
a rule which assigns a number
to every outcome e of an experiment.

The random variable is a function $X(e)$ that maps the set of experiment outcomes to the set of numbers.

A random process is a rule that maps every outcome e of an experiment to a function $X(t, e)$.
https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf

Random Process (4)

- A random process is usually conceived of as a function of time, but there is no reason to not consider random processes that are functions of other independent variables, such as spatial coordinates.
- The function $X(u, v, e)$ would be a function whose value depended on the location (u, v) and the outcome e, and could be used in representing random variations in an image
https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf

Random Process (5)

- The domain of e is the set of outcomes of the experiment.
- We assume that a probability distribution is known for this set.
- The domain of t is a set, T, of real numbers. If T is the real axis then $X(t, e)$ is a continuous-time random process, and if T is the set of integers then $X(t, e)$ is a discrete-time random process
https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf

Ensemble of time functions

Time functions

A random process $X(t, s)$ represents
a family or ensemble of time functions
$X(t, s)$ represents

- a single time function $x(t, s)$
- when t is a variable and s is fixed at an outcome
$x(t, s)$ represents
- a sample function,
- an ensemble member,
- a realization of the process

Short-form notation for time functions

The short-form notation $\times(t)$

to represent a specific waveform of a random process $X(t)$ for a given outcome s_{i}

$$
\begin{aligned}
& x(t)=x(t, s) \\
& x(t)=x(t, s)
\end{aligned}
$$

Random Process Example

Example

$$
\begin{array}{lc}
X\left(t, s_{1}\right)=x_{1}(t) & s_{1} \longrightarrow x_{1}(t) \\
X\left(t, s_{2}\right)=x_{2}(t) & s_{2} \longrightarrow x_{2}(t) \\
\ldots & \ldots \\
X\left(t, s_{n}\right)=x_{n}(t) & s_{n} \longrightarrow x_{n}(t)
\end{array}
$$

$S=\left\{s_{1} \quad, s_{2} \quad, s_{3} \quad, \ldots, s_{n} \quad\right\} \quad$ a sample space $X(t)=\left\{x_{1}(t), x_{2}(t), x_{3}(t), \ldots, x_{n}(t)\right\} \quad$ a random process

Random variables with time

a random process $X(t, s)$ represents a single time function when t is a variable and s is fixed at an outcome
a random process $X(t, s)$ represents a single random variable when both t and s are fixed at a time and an outcome, respectively

$$
X_{i}=X\left(t_{i}, s\right)=X\left(t_{i}\right) \quad \text { random variable }
$$

$$
X(t, s)=X(t)
$$

random process

An alphabet

the alphabet of $X(t)$

the set of its possible values

- the values of time t for which a random process is defined
- the alphabet of the random variable $X=X(t)$ at time t

Classification of Random Processes
 (1) Types of time and alphabet

- the values of time t for which a random process is defined
- continuous time
- discrete time
- the alphabet of the random variable $X=X(t)$ at time t
- continuous alphabet
- discrete alphabet

Classification of Random Processes
 (2) types of the random variable $X(t)$ and the time t

- a continuous alphabet continuous time random process - $X(t)$ has continuous values and t has continuous values
- a discrete alphabet continuous time random process - $X(t)$ has discrete values and t has continuous values
- a continuous alphabet discrete time random process - $X(t)$ has continuous values and t has discrete values
- a discrete alphabet discrete time random process
- $X(t)$ has discrete values and t has discrete values

Deterministic and Non-deterministic Random Processes

- A process is non-deterministic if future values of any sample function cannot be predicted exactly from observed past values
- A process is deterministic
if future values of any sample function can be predicted from observed past values

Deterministic Random Process Example (1)

$$
X(t)=A \cos \left(\omega_{0} t+\Theta\right)
$$

A, Θ, or ω_{0} (or all) can be random variables.
a sample function corresponds to the above equation with particular values of these random variables.

$$
x_{i}(t)=A_{i} \cos \left(\omega_{0, i} t+\Theta_{i}\right)
$$

Deterministic Random Process Example (2)

$$
x_{i}(t)=A_{i} \cos \left(\omega_{0, i} t+\Theta_{i}\right)
$$

the knowledge of the sample function prior to any time instance fully allows the prediction of the sample function's future values because all the necessary information is known

$$
x_{i}(t) \quad t \leq 0 \quad \Longrightarrow \quad x_{i}(t) \quad t>0
$$

Functions and variables of a random process $X(t, \theta)(1)$

$X(t, \theta)$	a family of functions, an ensemble
$X\left(t, \theta_{k}\right)$	a single time function selected by the outcome θ_{k}
$X\left(t_{1}, \theta\right)$	a random variable at the time $t=t_{1}$
$X\left(t_{1}, \theta_{k}\right)$	a number at the time $t=t_{1}$, of the outcome θ_{k}

https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf

Functions and variables of a random process $X(t, \theta)(2)$

- $X(t, \theta)$ is a family of functions. Imagine a giant strip chart recording in which each pen is identified with a different θ. This family of functions is traditionally called an ensemble.
- A single function $X\left(t, \theta_{k}\right)$ is selected by the outcome θ_{k}. This is just a time function that we could call $X_{k}(t)$. Different outcomes give us different time functions.
- If t is fixed, say $t=t_{1}$, then $X\left(t_{1}, \theta\right)$ is a random variable. Its value depends on the outcome θ.
- If both t_{1} and θ_{k} are given then $X\left(t_{1}, \theta_{k}\right)$ is just a number.

