## Solution 2

1. We use Newtons's second law for Rotation which is $\Sigma \tau=I \alpha$ for the derivation.

$$
\begin{equation*}
\Sigma \tau_{1}=I_{1} \alpha_{1} \tag{1}
\end{equation*}
$$

We note that there are three torques applied on the particle 1; gravitational torque, controlling torque, and spring torque.
Gravitational torque is

$$
\begin{equation*}
\tau_{g}=\vec{l} \times \vec{F}_{g}=-l \sin \theta_{1} m_{1} g \tag{2}
\end{equation*}
$$

Controlling torque is

$$
\begin{equation*}
\tau_{c}=\vec{l} \times \vec{F}_{c}=l \cos \theta_{1} u_{1} \tag{3}
\end{equation*}
$$

Spring torque is

$$
\begin{equation*}
\tau_{s}=\vec{a} \times \vec{F}_{s}=-a \cos \theta_{1} k a\left(\sin \theta_{1}-\sin \theta_{2}\right) \tag{4}
\end{equation*}
$$

Moment of inertia for the point mass is

$$
\begin{equation*}
I_{1}=m_{1} l^{2} \tag{5}
\end{equation*}
$$

Angular acceleration for the point mass is

$$
\begin{equation*}
\alpha_{1}=\ddot{\theta}_{1} \tag{6}
\end{equation*}
$$

We set up the equation of motion for the first particle.

$$
\begin{equation*}
m_{1} l^{2} \ddot{\theta}_{1}=\tau_{a}+\tau_{g}+\tau_{c}=-a \cos \theta_{1} k a\left(\sin \theta_{1}-\sin \theta_{2}\right)-l \sin \theta_{1} m_{1} g+l \cos \theta_{1} u_{1} \tag{7}
\end{equation*}
$$

Apply the small-angle approximation which states that $\sin x \approx x$ and $\cos x \approx 1$ to simplify equation as

$$
\begin{equation*}
m_{1} l^{2} \ddot{\theta}_{1}=-k a^{2}\left(\theta_{1}-\theta_{2}\right)-l \theta_{1} m_{1} g+l u_{1} \tag{8}
\end{equation*}
$$

We use the same techniques to derive the equation of motion for second particle.
Gravitational torque is

$$
\begin{equation*}
\tau_{g}=\vec{l} \times \vec{F}_{g}=-l \sin \theta_{2} m_{2} g \tag{9}
\end{equation*}
$$

Controlling torque is

$$
\begin{equation*}
\tau_{c}=\vec{l} \times \vec{F}_{c}=l \cos \theta_{2} u_{2} \tag{10}
\end{equation*}
$$

Spring torque is

$$
\begin{equation*}
\tau_{s}=\vec{a} \times \vec{F}_{s}=-a \cos \theta_{2} k a\left(\sin \theta_{2}-\sin \theta_{1}\right) \tag{11}
\end{equation*}
$$

Moment of inertia for the point mass is

$$
\begin{gather*}
I_{2}=m_{2} l^{2}  \tag{12}\\
\alpha_{2}=\ddot{\theta}_{2} \tag{13}
\end{gather*}
$$

Angular acceleration for the point mass is

We set up the equation of motion for the second particle.

$$
\begin{equation*}
m_{2} l^{2} \ddot{\theta}_{2}=\tau_{a}+\tau_{g}+\tau_{c}=-a \cos \theta_{2} k a\left(\sin \theta_{2}-\sin \theta_{1}\right)-l \sin \theta_{2} m_{2} g+l \cos \theta_{2} u_{2} \tag{14}
\end{equation*}
$$

Apply the small-angle approximation which states that $\sin x \approx x$ and $\cos x \approx 1$ to simplify equation as

$$
\begin{equation*}
m_{2} l^{2} \ddot{\theta}_{2}=-k a^{2}\left(\theta_{2}-\theta_{1}\right)-l \theta_{2} m_{2} g+l u_{2} \tag{15}
\end{equation*}
$$

2. We write $\dot{x}(t)=A(t) x(t)+B(t) u(t)$ in matrix form.

$$
\left[\begin{array}{c}
\dot{\theta}_{1}  \tag{16}\\
\ddot{\theta}_{1} \\
\dot{\theta}_{2} \\
\ddot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\dot{\theta}_{1} \\
\theta_{2} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22} \\
B_{31} & B_{32} \\
B_{41} & B_{42}
\end{array}\right]\left[\begin{array}{l}
u_{1} l \\
u_{2} l
\end{array}\right]
$$

We divide the both side of $m_{1} l^{2} \ddot{\theta}_{1}=-k a^{2}\left(\theta_{1}-\theta_{2}\right)-l \theta_{1} m_{1} g+l u_{1}$ by $m_{1} l^{2}$ to get

$$
\begin{equation*}
\ddot{\theta}_{1}=-\frac{k a^{2}}{m_{1} l^{2}}\left(\theta_{1}-\theta_{2}\right)-\frac{1}{l} \theta_{1} g+l u_{1}=-\theta_{1}\left(\frac{k a^{2}}{m_{1} l^{2}}+\frac{g}{l}\right)+\theta_{2} \frac{k a^{2}}{m_{1} l^{2}}+l u_{1} \tag{17}
\end{equation*}
$$

Similarly, we divide the both side of $m_{2} l^{2} \ddot{\theta}_{2}=-k a^{2}\left(\theta_{2}-\theta_{1}\right)-l \theta_{2} m_{2} g+l u_{2}$ by $m_{2} l^{2}$ to get

$$
\begin{equation*}
\ddot{\theta}_{2}=-\frac{k a^{2}}{m_{2} l^{2}}\left(\theta_{2}-\theta_{1}\right)-\frac{1}{l} \theta_{2} g+l u_{2}=\theta_{1} \frac{k a^{2}}{m_{2} l^{2}}-\theta_{2}\left(\frac{k a^{2}}{m_{2} l^{2}}+\frac{g}{l}\right)+l u_{2} \tag{18}
\end{equation*}
$$

We can easily determine that the all the components on row 1 and row 3 of matrix A and matrix B are null, so we write that

$$
\left[\begin{array}{l}
\dot{\theta}_{1}  \tag{19}\\
\ddot{\theta}_{1} \\
\dot{\theta}_{2} \\
\ddot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
A_{21} & A_{22} & A_{23} & A_{24} \\
0 & 0 & 0 & 0 \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\dot{\theta}_{1} \\
\theta_{2} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
B_{21} & B_{22} \\
0 & 0 \\
B_{41} & B_{42}
\end{array}\right]\left[\begin{array}{l}
u_{1} l \\
u_{2} l
\end{array}\right]
$$

Now we plug in the expressions of $\ddot{\theta}_{1}$ and $\ddot{\theta}_{2}$ into the matrix.

$$
\left[\begin{array}{c}
\dot{\theta}_{1}  \tag{20}\\
\ddot{\theta}_{1} \\
\dot{\theta}_{2} \\
\ddot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-\frac{k a^{2}}{m_{1} l^{2}}-\frac{g}{l} & 0 & \frac{k a^{2}}{m_{1} l^{2}} & 0 \\
0 & 0 & 0 & 0 \\
\frac{k a^{2}}{m_{2} l^{2}} & 0 & -\frac{k a^{2}}{m_{2} l^{2}}-\frac{g}{l} & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\dot{\theta}_{1} \\
\theta_{2} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} l \\
u_{2} l
\end{array}\right]
$$

