
Young Won Lim
1/18/18

IO Monad (3D)

Young Won Lim
1/18/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

mailto:youngwlim@hotmail.com

IO Monad (3D) 3 Young Won Lim
1/18/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

IO Monad (3D) 4 Young Won Lim
1/18/18

A pure function
● no state
● no access to external states
● no side effects

A pure function returns exactly the same result

every time it's called with the same set of arguments.

Calling a pure function once is the same as calling it twice and
discarding the result of the first call.

laziness

● easily parallelized
● no data races

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Pure Function

IO Monad (3D) 5 Young Won Lim
1/18/18

Haskell runtime
● first evaluates main (an expression)

 not to a simple value
 but to an action.

● then executes this action.

 the program itself has no side effects
 the action does have side effects

the functional nature of the program is maintained

(no side effects)

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Actions

Evaluation

Execution

Program

Actions

IO Monad (3D) 6 Young Won Lim
1/18/18

main calls functions like putStrLn or print,

which return IO actions.

there is only one non-trivial source of IO actions:
● primitives built into the language.
● return converts any value into an IO action.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Simple IO

IO Monad (3D) 7 Young Won Lim
1/18/18

IO action is invoked, after the Haskell program has run

● We can never execute an IO action inside the program

● once created, an IO action keeps percolating up

until it ends up in main and is executed by the runtime.

● can also discard an IO action,

but that means it will never be evaluated

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

IO Actions in main

IO Monad (3D) 8 Young Won Lim
1/18/18

Haskell will not calculate anything

unless it's strictly necessary

or is forced by the programmer

won't even evaluate arguments to a function before calling it.

assumes that the arguments will not be used by the function

procrastinates as long as possible.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness

IO Monad (3D) 9 Young Won Lim
1/18/18

Division by zero : undefined - never be evaluated.

main = print $ undefined + 1

the compiler doesn't complain

a runtime error resulting from an attempt to evaluate undefined.

foo x = 1

main = print $ (foo undefined) + 1

Haskell calls foo but never evaluates its argument undefined

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness Example 1

IO Monad (3D) 10 Young Won Lim
1/18/18

not result from optimization: The compiler sees the definition of
foo and figures out that foo and discards its argument.

But the result is the same

if the definition of foo is hidden from view in another module.

{-# START_FILE Foo.hs #-}

-- show

module Foo (foo) where

foo x = 1

{-# START_FILE Main.hs #-}

-- show

import Foo

main = print $ (foo undefined) + 1

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness Example 2

IO Monad (3D) 11 Young Won Lim
1/18/18

laziness allows it to deal with
● infinity (like an infinite list)
● the future that hasn't materialized yet

Laziness or not, a program is going to be executed at some point.

why an expression would have to be evaluated --

there are several reasons

the fundamental one – somebody wants to display its result.

without I/O, nothing would ever be evaluated in Haskell.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Laziness with infinity

IO Monad (3D) 12 Young Won Lim
1/18/18

Larger IO actions are built from smaller IO actions.
● the order of composition
● sequence of IO actions.

special syntax for sequencing : the do notation.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation

IO Monad (3D) 13 Young Won Lim
1/18/18

main = do

 putStrLn "The answer is: "

 print 43

sequencing two IO actions
● one IO action returned by putStrLn
● another IO action returned by print

inside a do block with proper indentation.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation Example

IO Monad (3D) 14 Young Won Lim
1/18/18

whatever you receive from the user or from a file

you assign to a variable and use it later.

main = do

 str <- getLine

 putStrLn str

● not really a variable
● not really an assignment

when executed,

creates an action that will take the input from the user.

then pass this input to the rest of actions of the do block

under the name str when the rest is executed.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation – input action (1)

IO Monad (3D) 15 Young Won Lim
1/18/18

 str <- getLine

In Haskell you never assign to a variable,

instead you bind a name to a value.

it binds the name str to the value returned

by executing the action that was produced by getLine.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Do Notation – input action (2)

IO Monad (3D) 16 Young Won Lim
1/18/18

the do block is used for
● IO actions
● sequencing a more general set of monadic operations

IO is just one example of a monad

a monad has an imperative feel.

A monadic do block
● really looks like chunks of imperative code.
● also behaves like imperative code

all imperative programming is at its core monadic.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Monadic Operation

IO Monad (3D) 17 Young Won Lim
1/18/18

The way the actions are glued together

is the essence of the Monad.

Since the glueing happens between the lines,

the Monad is sometimes described as

an "overloading of the semicolon."

Different monads overload it differently.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

Semicolon Overloading

IO Monad (3D) 18 Young Won Lim
1/18/18

IO Monad

the type signature IO a looks remarkably similar to Maybe a.

● IO doesn't expose its constructors

● only be "run" by the Haskell runtime system

● a Functor

● a Monad

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3D) 19 Young Won Lim
1/18/18

Haskell separates pure functions from computations where
side effects must be considered

by encoding those side effects

as values of a particular type (IO a)

Specifically, a value of type (IO a) is an action,

which if executed would produce a value of type a.

https://wiki.haskell.org/Introduction_to_IO

IO Monad

IO a

World (a, World)

a type of action

Execution → Value

IO Monad (3D) 20 Young Won Lim
1/18/18

getLine :: IO String

putStrLn :: String -> IO () -- note that the result value is an empty tuple.

randomRIO :: (Random a) => (a,a) -> IO a

Normally Haskell evaluation doesn't cause

this execution to occur.

A value of type (IO a) is almost completely inert.

the only IO action is to run in main

https://wiki.haskell.org/Introduction_to_IO

Functions returning IO a (1)

IO Monad (3D) 21 Young Won Lim
1/18/18

main :: IO ()

main = putStrLn "Hello, World!"

main = putStrLn "Hello" >> putStrLn "World"

main = putStrLn "Hello, what is your name?"

 >> getLine

 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

https://wiki.haskell.org/Introduction_to_IO

Functions returning IO a (2)

putStrLn :: String -> IO ()

getLine :: IO String

putStrLn :: String -> IO ()

IO Monad (3D) 22 Young Won Lim
1/18/18

(>>) :: IO a -> IO b -> IO b

(x >> y)
● if x and y are IO actions
● then it is the action that first performs x
● dropping the result
● then performs y
● returns its result.

https://wiki.haskell.org/Introduction_to_IO

>> of IO Monad

putStrLn "Hello" >> putStrLn "World"

IO () -> IO () -> IO ()

IO Monad (3D) 23 Young Won Lim
1/18/18

(>>=) :: IO a -> (a -> IO b) -> IO b

(x >>= f)
● to use the result of the first action (x)
● in order to affect what the second action will do

● the action that first performs the action x
● and captures its result
● passing it to f
● then f computes a second action to be performed.
● this second action is then carried out,
● its result is the result of the overall computation.

https://wiki.haskell.org/Introduction_to_IO

>>= of IO Monad

x >> y = x >>= const y

getLine >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

 IO a -> (a -> IO b) -> IO b

IO Monad (3D) 24 Young Won Lim
1/18/18

randomR :: RandomGen g => (a, a) -> g -> (a, g)

takes a range (lo,hi) and a random number generator g,

and returns a random value uniformly distributed

in the closed interval [lo,hi], together with a new generator.

randomRIO :: (a, a) -> IO a

A variant of randomR that uses the global random number generator

See System.Random

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html

randomRIO

IO Monad (3D) 25 Young Won Lim
1/18/18

import System.Random

main = do

 putStr . show =<< randomRIO (0, 100 :: Int)

 putStr ", "

 print =<< randomRIO (0, 100 :: Int)

 print =<< (randomIO :: IO Float)

$ runhaskell random-numbers.hs

51, 15

0.2895795

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html

RandomRIO Example

IO Monad (3D) 26 Young Won Lim
1/18/18

main = putStrLn "Hello, what is your name?"

 >> getLine

 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

main = do putStrLn "Hello, what is your name?"

 name <- getLine

 putStrLn ("Hello, " ++ name ++ "!")

return :: a -> IO a

Note that there is no function:

unsafe :: IO a -> a

https://wiki.haskell.org/Introduction_to_IO

Bind operator >>= and do Block

IO Monad (3D) 27 Young Won Lim
1/18/18

getChar :: IO Char

putChar :: Char -> IO ()

main :: IO ()

main = do c <- getChar

 putChar c

ready :: IO Bool

ready = do c <- getChar

 c == 'y' -- Bad!!!

return (c == 'y')

https://www.haskell.org/tutorial/io.html

Return IO Bool

c == 'y' : just a boolean value,

not an action.

need to take this boolean

and create an action

that does nothing

but return the boolean as its result.

IO Monad (3D) 28 Young Won Lim
1/18/18

return :: a -> IO a

getLine :: IO String

getLine = do c <- getChar

 if c == '\n'

 then return ""

 else do l <- getLine

 return (c:l)

Each do introduces a single chain of statements.

Any intervening construct, such as the if,

must use a new do to initiate further sequences of actions.

https://www.haskell.org/tutorial/io.html

Each do, a single chain of statements

IO Monad (3D) 29 Young Won Lim
1/18/18

 f :: Int -> Int -> Int

absolutely cannot do any I/O

since no IO a in the returned type.

Basically, it is not intended to place print statements liberally
throughout their code during debugging in Haskell.

There are some unsafe functions available to get around this
problem but these are not recommended.

Debugging packages (like Trace) often make liberal use of these
‘forbidden functions' in an entirely safe manner.

https://www.haskell.org/tutorial/io.html

Unsafe functions

IO Monad (3D) 30 Young Won Lim
1/18/18

todoList :: [IO ()]

todoList = [putChar 'a',

 do putChar 'b'

 putChar 'c',

 do c <- getChar

 putChar c]

This list does not actually invoke any actions

---it simply holds them.

To join these actions into a single action,

a function such as sequence_ is needed:

https://www.haskell.org/tutorial/io.html

IO Actions: Ordinary Values

IO Monad (3D) 31 Young Won Lim
1/18/18

sequence_ :: [IO ()] -> IO ()

sequence_ [] = return ()

sequence_ (a:as) = do a

 sequence_ as

sequence_ :: [IO ()] -> IO ()

sequence_ = foldr (>>) (return ())

https://www.haskell.org/tutorial/io.html

Join a list of actions

do x;y

x >> y

IO Monad (3D) 32 Young Won Lim
1/18/18

putStr :: String -> IO ()

putStr s = sequence_ (map putChar s)

In an imperative language,

mapping an imperative version of putChar over the string

would be sufficient to print it.

In Haskell, however,

the map function does not perform any action.

Instead it creates a list of actions,

one for each character in the string.

https://www.haskell.org/tutorial/io.html

putStr via putChar

do x;y

x >> y

[putChar ‘a’, putChar ‘b’, putChar ‘c’]

IO Monad (3D) 33 Young Won Lim
1/18/18

putStr :: String -> IO ()

putStr s = sequence_ (map putChar s)

sequence_ :: [IO ()] -> IO ()

sequence_ = foldr (>>) (return ())

The foldr operation in sequence_ uses the >> function

to combine all of the individual actions into a single action.

The return () used here is quite necessary –

foldr needs a null action at the end of the chain of actions

(especially if there are no characters in the string!).

https://www.haskell.org/tutorial/io.html

putStr via putChar

[putChar ‘a’, putChar ‘b’, putChar ‘c’]

IO Monad (3D) 34 Young Won Lim
1/18/18

Errors are encoded using a special data type, IOError.

This type represents all possible exceptions that may occur within
the I/O monad.

This is an abstract type: no constructors for IOError are available
to the user.

isEOFError :: IOError -> Bool

https://www.haskell.org/tutorial/io.html

Exception Handling

IO Monad (3D) 35 Young Won Lim
1/18/18

An exception handler has type IOError -> IO a.

The catch function associates an exception handler with an
action or set of actions

The arguments to catch are an action and a handler.

catch :: IO a -> (IOError -> IO a) -> IO a

If the action succeeds,

its result is returned without invoking the handler.

If an error occurs, it is passed to the handler as a value of type
IOError and the action associated with the handler is then
invoked

https://www.haskell.org/tutorial/io.html

Exception Handling

IO Monad (3D) 36 Young Won Lim
1/18/18

catch :: IO a -> (IOError -> IO a) -> IO a

getChar' :: IO Char

getChar' = getChar `catch` (\e -> return '\n')

getChar' :: IO Char

getChar' = getChar `catch` eofHandler where

 eofHandler e = if isEofError e then return '\n' else ioError e

isEOFError :: IOError -> Bool

ioError :: IOError -> IO a

https://www.haskell.org/tutorial/io.html

Exception Handling

IO Monad (3D) 37 Young Won Lim
1/18/18

getLine' :: IO String

getLine' = catch getLine'' (\err -> return ("Error: " ++ show err))

 where

 getLine'' = do c <- getChar'

 if c == '\n' then return ""

 else do l <- getLine'

 return (c:l)

https://www.haskell.org/tutorial/io.html

Exception Handling

IO Monad (3D) 38 Young Won Lim
1/18/18

type FilePath = String -- path names in the file system

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

data IOMode = ReadMode | WriteMode

| AppendMode | ReadWriteMode

Opening a file creates a handle (of type Handle) for use in I/O
transactions. Closing the handle closes the associated file:

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles

IO Monad (3D) 39 Young Won Lim
1/18/18

Handles can also be associated with channels:

communication ports not directly attached to files.

Predefined channel handles :stdin, stdout, and stderr

Character level I/O operations include hGetChar and hPutChar,
which take a handle as an argument.

The getChar function used previously can be defined as:

 getChar = hGetChar stdin

Haskell also allows the entire contents of a file or channel to be
returned as a single string:

getContents :: Handle -> IO String

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles

IO Monad (3D) 40 Young Won Lim
1/18/18

main = do fromHandle <- getAndOpenFile "Copy from: "
ReadMode

 toHandle <- getAndOpenFile "Copy to: " WriteMode

 contents <- hGetContents fromHandle

 hPutStr toHandle contents

 hClose toHandle

 putStr "Done."

getAndOpenFile :: String -> IOMode -> IO Handle

getAndOpenFile prompt mode =

 do putStr prompt

 name <- getLine

 catch (openFile name mode)

 (_ -> do putStrLn ("Cannot open "++ name ++ "\n")

 getAndOpenFile prompt mode)

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles

IO Monad (3D) 41 Young Won Lim
1/18/18

getLine = do c <- getChar

 if c == '\n'

 then return ""

 else do l <- getLine

 return (c:l)

function getLine() {

 c := getChar();

 if c == `\n` then return ""

 else {l := getLine();

 return c:l}}

https://www.haskell.org/tutorial/io.html

Functional vs Imperative Programming

IO Monad (3D) 42 Young Won Lim
1/18/18

IO Monad (3D) 43 Young Won Lim
1/18/18

put :: s -> State s ()

put :: s -> (State s) ()

one value input type s

the effect-monad State s

the value output type ()

the operation is used only for its effect;

the value delivered is uninteresting

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

IO ()

IO Monad (3D) 44 Young Won Lim
1/18/18

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

IO Monad (3D) 45 Young Won Lim
1/18/18

 Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

where the return type is a type application:

the function tells you which effects are possible

and the argument tells you what sort of value

is produced by the operation

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

IO ()

IO Monad (3D) 46 Young Won Lim
1/18/18

Generally, a monad cannot perform side effects in Haskell.

there is one exception: IO monad

Suppose there is a type called World,

which contains all the state of the external universe

A way of thinking what IO monad does

 type IO t = World -> (t, World) type synonym

IO t is a function

input : a World

output: the t it’s supposed to contain,

a new, updated World obtained

by modifying the given World

in the process of computing the t.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

World (t, World)

World -> (t, World)

IO tWorld (t, World)

 IO x world0 (x, world1)

IO Monad (3D) 47 Young Won Lim
1/18/18

instance Monad IO where

 return x world = (x, world)

 (ioX >>= f) world0 =

 let

 (x, world1) = ioX world0

 in

 f x world1 -- Has type (t, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

ioXWorld (t, World)
f

World
(t, World)

 f x world1

 world0 (x, world1)

t

x

world1

IO Monad (3D) 48 Young Won Lim
1/18/18

The return function takes x

and gives back a function

that takes a World

and returns x along with the “new, updated” World

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

 return x world = (x, world)

returnx

World (x, World)

IO Monad (3D) 49 Young Won Lim
1/18/18

the expression (ioX >>= f) has type World -> (t, World)

a function that takes a World, called world0,

which is used to extract x from its IO monad.

This gets passed to f, resulting in another IO monad,

which again is a function that takes a World

and returns a x and a new, updated World.

We give it the World we got back from getting x out of its monad,

and the thing it gives back to us is the t with a final version of the World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

ioXWorld (t, World)
f

World
(t, World)

 f x world1

 world0 (x, world1)

t

x

world1

the implementation of bind

Young Won Lim
1/18/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

