The Growth of Functions (2A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Functions and Ranges

$$
\begin{array}{ll}
x^{2}+2 x+1 & A_{1}=[0,5] \\
x^{2} & A_{2}=[0,100] \\
2 x & A_{3}=[0,500] \\
1 &
\end{array}
$$

All are distinguishable

Medium Range

similar

Functions and Ranges

$2 \cdot x^{2}$
$x^{2}+2 x+1$
$2 x$

1

$$
\begin{aligned}
& B_{1}=[0,5] \\
& B_{2}=[0,100] \\
& B_{3}=[0,500]
\end{aligned}
$$

distinguishable

Medium Range, $2 x^{2}$
distinguishable

Functions (2A)

Functions and Ranges

Functions (2A)

Medium Range, $10 x^{2}$

distinguishable

Functions (2A)
distinguishable

Functions (2A)

Functions and Ranges

$$
\begin{array}{ll}
10 \cdot x & D_{1}=[0,5] \\
x^{2}+2 x+1 & D_{2}=[0,100] \\
& D_{3}=[0,500]
\end{array}
$$

Small Range, 10x

Medium Range, 10x

Functions (2A)

$x^{2}+2 x+1 \quad$ indistinguishable

Functions (2A)

Big-O Definition

Let f and g be functions $\quad(Z \rightarrow R$ or $R \rightarrow R)$
from the set of integers or the set of real numbers to the set of real numbers.

We say $f(x)$ is $O(g(x)) \quad$ " $f(x)$ is big-oh of $g(x)$ "
If there are constants C and k such that

$$
|f(x)| \leq C|g(x)| \quad \text { whenever } x>k .
$$

$$
g(x) \text { : upper bound of } f(x)
$$

Big- Ω Definition

Let f and g be functions $\quad(Z \rightarrow R$ or $R \rightarrow R)$
from the set of integers or the set of real numbers to the set of real numbers.

We say $f(x)$ is $\Omega(g(x)) \quad$ " $f(x)$ is big-omega of $g(x)$ "
If there are constants C and k such that

$$
C|g(x)| \leq|f(x)| \quad \text { whenever } x>k \text {. }
$$

$g(x)$: lower bound of $f(x)$

Big-O Definition

$$
\begin{aligned}
& \text { for } k<x \\
& f(x) \leq C|g(x)| \\
& f(x) \text { is } \boldsymbol{O}(g(x))
\end{aligned}
$$

$g(x)$: upper bound of $f(x)$
$g(x)$ has a simpler form than $f(x)$ is usually a single term

Big- Ω Definition

$$
\begin{aligned}
& \text { for } k<x \\
& f(x) \geq C|g(x)| \\
& f(x) \text { is } \boldsymbol{\Omega}(g(x))
\end{aligned}
$$

$g(x)$: lower bound of $f(x)$
$g(x)$ has a simpler form than $f(x)$
is usually a single term

Big-Ө definition

for $k<x$

$$
f(x) \leq C|g(x)| \Leftrightarrow f(x) \text { is } \boldsymbol{O}(g(x))
$$

$$
C|g(x)| \leq f(x) \quad \Leftrightarrow f(x) \text { is } \boldsymbol{\Omega}(g(x))
$$

$$
C_{1}|g(x)| \leq f(x) \leq C_{2}|g(x)| \Longleftrightarrow f(x) \text { is } \boldsymbol{\Theta}(g(x))
$$

Big-O $=\operatorname{Big}-\Omega \cap \operatorname{Big}-\mathbf{O}$

for $k<x$

$$
\boldsymbol{O}(g(x))
$$

$$
C_{1}|g(x)| \leq f(x) \leq C_{2}|g(x)| \Leftrightarrow f(x) \text { is } \boldsymbol{\Theta}(g(x))
$$

$$
\boldsymbol{\Omega}(g(x))
$$

$\boldsymbol{\Omega}(g(x)) \wedge \boldsymbol{O}(g(x))$
$\boldsymbol{\Theta}(g(x))$

$\boldsymbol{\Theta}(x)$ and $\boldsymbol{\Theta}(1)$

for $0<k<x$

$$
\begin{array}{ccl}
f(x) \leq C x & \Leftrightarrow & f(x) \text { is } \boldsymbol{O}(x) \\
C x \leq f(x) & \Leftrightarrow & f(x) \text { is } \boldsymbol{\Omega}(x) \\
C_{1} x \leq f(x) \leq C_{2} x & \Leftrightarrow & f(x) \text { is } \boldsymbol{\Theta}(x)
\end{array}
$$

$$
f(x) \leq C \cdot 1
$$

$$
C \cdot 1 \leq f(x)
$$

$$
C_{1} \cdot 1 \leq f(x) \leq C_{2} \cdot 1
$$

$f(x)$ is $\boldsymbol{O}(1)$
$f(x)$ is $\boldsymbol{\Omega}(1)$
$f(x)$ is $\boldsymbol{\Theta}(1)$

Big-O, Big- Ω, Big-O Examples

Many Larger Upper Bounds

the least upper bound?

Many Smaller Lower Bound

the greatest lower bound?

Many Upper and Lower Bounds

$$
\begin{aligned}
& x^{2}+2 x+1 \text { is } \boldsymbol{O}\left(x^{2}\right) \\
& x^{2}+2 x+1 \text { is } \boldsymbol{O}\left(x^{3}\right) \\
& x^{2}+2 x+1 \text { is } \boldsymbol{O}\left(x^{4}\right)
\end{aligned}
$$

-

\bullet
$x^{2}+2 x+1$ is $\boldsymbol{O}\left(x^{2}\right)$
$x^{2}+2 x+1$ is $\boldsymbol{\Omega}(x)$
$x^{2}+2 x+1$ is $\boldsymbol{\Omega}(\sqrt{x})$
$x^{2}+2 x+1$ is $\boldsymbol{\Omega}(\log x)$

-

Simultaneously being lower and upper bound

$$
f(x)=x^{2}+2 x+1
$$

Big-O Examples (1)

Big-O Examples (2)

Big-O Examples (3)

Tight bound Implications

$$
\begin{aligned}
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longrightarrow f(x) \text { is } \boldsymbol{O}(g(x)) \\
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longrightarrow f(x) \text { is } \boldsymbol{\Omega}(g(x)) \\
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longleftrightarrow f(x) \text { is } \boldsymbol{O}(g(x)) \\
& f(x) \text { is } \boldsymbol{\Theta}(g(x)) \longleftrightarrow f(x) \text { is } \boldsymbol{\Omega}(g(x))
\end{aligned}
$$

Common Growth Functions

Upper bounds

$$
f_{1}(x) \text { is } \boldsymbol{O}(\log x) \Longrightarrow \boldsymbol{O}(\sqrt{x}) \Longrightarrow \boldsymbol{O}(x) \Longrightarrow \boldsymbol{O}(x \log x) \Longrightarrow \boldsymbol{o}\left(x^{2}\right)
$$

Lower bounds

$$
f_{2}(x) \text { is } \boldsymbol{\Omega}\left(x^{2}\right) \Longrightarrow \boldsymbol{\Omega}(x \log x) \Longrightarrow \boldsymbol{\Omega}(x) \Longrightarrow \boldsymbol{\Omega}(\sqrt{x}) \Longrightarrow \boldsymbol{\Omega}(\log x)
$$

Example 1

$$
\begin{array}{ll|l}
f(n)=n^{6}+3 n & f(n)=O\left(n^{6}\right) & f(n)=\Omega(n) \\
f(n)=2^{n}+12 & f(n)=O\left(2^{n}\right) & f(n)=\Omega(1) \\
f(n)=2^{n}+3^{n} & f(n)=O\left(3^{n}\right) & f(n)=\Omega\left(2^{n}\right) \\
f(n)=n^{n}+n & f(n)=O\left(n^{n}\right) & f(n)=\Omega(n)
\end{array}
$$

Example 2

$$
\begin{array}{ll|l|l}
f(n)=n^{6}+3 n & f(n)=O\left(n^{6}\right) & f(n)=\Omega\left(n^{6}\right) & f(n)=\Theta\left(n^{6}\right) \\
f(n)=2^{n}+12 & f(n)=O\left(2^{n}\right) & f(n)=\Omega\left(2^{n}\right) & f(n)=\Theta\left(2^{n}\right) \\
f(n)=2^{n}+3^{n} & f(n)=O\left(3^{n}\right) & f(n)=\Omega\left(3^{n}\right) & f(n)=\Theta\left(3^{n}\right) \\
f(n)=n^{n}+n & f(n)=O\left(n^{n}\right) & f(n)=\Omega\left(n^{n}\right) & f(n)=\Theta\left(n^{n}\right)
\end{array}
$$

Example 3

$$
\left.\begin{array}{ll}
\Theta(n) \longrightarrow O(n) & \\
\Theta(n) \longrightarrow O\left(n^{2}\right) & \Theta(n) \rightarrow O(n) \rightarrow O\left(n^{2}\right) \\
\Theta\left(n^{2}\right) \longrightarrow O\left(n^{3}\right) & \Theta\left(n^{2}\right) \rightarrow O\left(n^{2}\right) \rightarrow O\left(n^{3}\right) \\
\Theta(n) \longrightarrow O(1) & \Theta(n) \rightarrow \Omega(n) \nvdash O(1) \\
O(1) \longrightarrow O(1) & \Theta(1) \equiv \Omega(1) \equiv O(1) \\
O(n) \longrightarrow O(1) & \log (n): O(\log n) \rightarrow O(n) \\
& \text { generally not true }
\end{array}\right) \log (n): \Omega(\log n) \times O(1)
$$

Example 4

Example 5

Example 6

$$
f(n)=6 n^{2}+3 n
$$

$$
\begin{aligned}
& f(n)=O\left(n^{2}\right) \longrightarrow f(n)=O\left(n^{3}\right) \quad \text { upper bound } \\
& f(n)=\Theta\left(n^{2}\right) \longrightarrow f(n) \neq \Theta\left(n^{3}\right) \\
& f(n)=\Omega\left(n^{2}\right) \longrightarrow f(n) \neq \Omega\left(n^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(n)=O\left(n^{2}\right) \longrightarrow f(n) \neq O(n) \\
& f(n)=\Theta\left(n^{2}\right) \longrightarrow f(n) \neq \Theta(n) \\
& f(n)=\Omega\left(n^{2}\right) \longrightarrow f(n)=\Omega(n)
\end{aligned}
$$

$$
c_{1} n^{2}-c_{2} n^{3}=n^{2}\left(c_{1}-c_{2} n\right)
$$

$$
c_{1} n^{2}-c_{2} n=n\left(c_{1} n-c_{2}\right)
$$

Example 7

$O\left(n^{2}\right)$	$\longrightarrow O\left(n^{3}\right)$	always true
$\Theta\left(n^{2}\right)$	$\longleftrightarrow \Theta\left(n^{3}\right)$	always false
$\Omega\left(n^{2}\right)$	$\longrightarrow \Omega\left(n^{3}\right)$	generally not true

$O\left(n^{2}\right)$	$\longrightarrow O(n)$	generally not true
$\Theta\left(n^{2}\right)$	$\longrightarrow \Theta(n)$	always false
$\Omega\left(n^{2}\right)$	\longrightarrow	

References

[1] http://en.wikipedia.org/
[2]

