The Growth of Functions (2A)

Copyright (c) 2015 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".			
Please send corrections (or suggestions) to youngwlim@hotmail.com.			
This document was produced by using LibreOffice and Octave.			

$$x^{2}+2x+1$$

$$x^{2}$$

$$2x$$

$$1$$

$$A_1 = [0, 5]$$
 $A_2 = [0, 100]$
 $A_3 = [0, 500]$

All are distinguishable

for
$$x > -0.5$$

$$x^2 < x^2 + 2x + 1$$

$$\begin{cases} x^2 + 2x + 1 & 250000 + 1001 \\ x^2 & 250000 \end{cases}$$

for
$$x > -0.5$$

$$x^2 < x^2 + 2x + 1$$

$$2 \cdot x^{2}$$

$$x^{2} + 2x + 1$$

$$2x$$

$$1$$

$$B_1 = [0,5]$$
 $B_2 = [0,100]$
 $B_3 = [0,500]$

$$10 \cdot x^{2}$$

$$x^{2} + 2x + 1$$

$$2x$$

$$1$$

$$C_1 = [0,5]$$
 $C_2 = [0,100]$
 $C_3 = [0,500]$

$$\frac{10 \cdot x}{x^2 + 2 x + 1}$$

$$\frac{x^2}{x^2}$$

$$D_1 = [0,5]$$
 $D_2 = [0,100]$
 $D_3 = [0,500]$

16

for
$$0.127 < x < 7.873$$
 $x^2 + 2x + 1 < 10x$

Large Range, 10x

indistinguishable

Big-O Definition

```
Let f and g be functions (Z→R or R→R) from the set of integers or the set of real numbers to the set of real numbers.

We say f(x) is O(g(x)) "f(x) is big-oh of g(x)"

If there are constants C and k such that

|f(x)| ≤ C|g(x)| whenever x > k.
```

Big-**Ω** Definition

```
Let f and g be functions (Z \rightarrow R \text{ or } R \rightarrow R)
     from the set of integers or
          the set of real numbers
     to the set of real numbers.
We say f(x) is \Omega(g(x)) "f(x) is big-omega of g(x)"
     If there are constants C and k such that
          C|g(x)| \le |f(x)| whenever x > k.
             g(x): lower bound of f(x)
```

Big-O Definition

for
$$k < x$$

$$f(x) \leq C|g(x)|$$

$$f(x)$$
 is $O(g(x))$

g(x): upper bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

$Big-\Omega$ Definition

for
$$k < x$$

$$f(x) \ge C|g(x)|$$

$$f(x)$$
 is $\Omega(g(x))$

g(x): lower bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

Big-O definition

for
$$k < x$$

$$f(x) \le C|g(x)| \longleftrightarrow f(x) \text{ is } O(g(x))$$

$$C|g(x)| \le f(x)$$
 \longleftrightarrow $f(x)$ is $\Omega(g(x))$

$$C_1|g(x)| \le f(x) \le C_2|g(x)| \longleftrightarrow f(x) \text{ is } \Theta(g(x))$$

$$Big-\Theta = Big-\Omega \cap Big-O$$

for
$$k < x$$

$$C_1|g(x)| \le f(x) \le C_2|g(x)| \longleftrightarrow f(x) \text{ is } \Theta(g(x))$$

$$\Omega(g(x))$$

$$\Omega(g(x)) \wedge O(g(x)) \longleftrightarrow \Theta(g(x))$$

$\Theta(x)$ and $\Theta(1)$

for
$$0 < k < x$$

$$f(x) \le C x \longleftrightarrow$$

$$Cx \leq f(x)$$

$$C_1 x \le f(x) \le C_2 x$$

$$f(x)$$
 is $O(x)$

$$f(x)$$
 is $\Omega(x)$

$$f(x)$$
 is $\Theta(x)$

$$f(x) \le C \cdot 1$$

$$f(x)$$
 is $O(1)$

$$C \cdot 1 \leq f(x)$$

$$\longleftrightarrow$$

$$f(x)$$
 is $\Omega(1)$

$$C_1 \cdot 1 \le f(x) \le C_2 \cdot 1$$

$$f(x)$$
 is $\Theta(1)$

Big- \mathbf{O} , Big- $\mathbf{\Omega}$, Big- $\mathbf{\Theta}$ Examples

for
$$x > -0.5$$

$$1x^{2} < x^{2} + 2x + 1$$

Many Larger Upper Bounds

the <u>least</u> upper bound?

Many Smaller Lower Bound

$$x^{2}+2x+1$$
 is $\Omega(x^{2})$
 $x^{2}+2x+1$ is $\Omega(x)$
 $x^{2}+2x+1$ is $\Omega(\sqrt{x})$
 $x^{2}+2x+1$ is $\Omega(\log x)$

the greatest lower bound?

Many Upper and Lower Bounds

$$x^2+2x+1$$
 is $O(x^2)$ $x^2+2x+1 \le Cx^2$ upper bound the least x^2+2x+1 is $O(x^3)$ $x^2+2x+1 \le Cx^3$ upper bound $x^2+2x+1 \le Cx^4$ upper bound x^2+2x+1

$$x^2+2x+1$$
 is $O(x^2)$ $x^2+2x+1 \ge Cx^2$ lower bound the greatest x^2+2x+1 is $O(x)$ $x^2+2x+1 \ge Cx$ lower bound x^2+2x+1 is $O(\sqrt{x})$ $x^2+2x+1 \ge C\sqrt{x}$ lower bound x^2+2x+1 is $O(\log x)$ $x^2+2x+1 \ge C\log x$ lower bound $x^2+2x+1 \ge C\log x$ lower bound

Simultaneously being lower and upper bound

$$f(x) = x^2 + 2x + 1$$

Big-© Examples (1)

Big-O Examples (2)

Big-O Examples (3)

Tight bound Implications

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$

Common Growth Functions

Upper bounds

$$f_1(x)$$
 is $O(\log x) \longrightarrow O(\sqrt{x}) \longrightarrow O(x) \longrightarrow O(x \log x) \longrightarrow O(x^2)$

Lower bounds

$$f_2(x)$$
 is $\Omega(x^2)$ \longrightarrow $\Omega(x \log x)$ \longrightarrow $\Omega(x)$ \longrightarrow $\Omega(\sqrt{x})$ \longrightarrow $\Omega(\log x)$

$$f(n)=n^{6}+3n$$

$$f(n)=2^{n}+12$$

$$f(n)=2^{n}+3^{n}$$

$$f(n)=n^{n}+n$$

$$f(n)=O(n^{6})$$

$$f(n)=O(2^{n})$$

$$f(n)=O(3^{n})$$

$$f(n)=O(n^{n})$$

$$f(n) = \Omega(n)$$

$$f(n) = \Omega(1)$$

$$f(n) = \Omega(2^{n})$$

$$f(n) = \Omega(n)$$

https://discrete.gr/complexity/

$$f(n)=n^{6}+3n$$

$$f(n)=2^{n}+12$$

$$f(n)=2^{n}+3^{n}$$

$$f(n)=n^{n}+n$$

$$f(n) = O(n^{6})$$

$$f(n) = O(2^{n})$$

$$f(n) = O(3^{n})$$

$$f(n) = O(n^{n})$$

$$f(n) = O(n^{6})$$
 $f(n) = \Omega(n^{6})$ $f(n) = \Theta(n^{6})$
 $f(n) = O(2^{n})$ $f(n) = \Omega(2^{n})$ $f(n) = \Theta(2^{n})$
 $f(n) = O(3^{n})$ $f(n) = \Omega(3^{n})$ $f(n) = \Theta(3^{n})$
 $f(n) = O(n^{n})$ $f(n) = \Omega(n^{n})$

https://discrete.gr/complexity/

https://discrete.gr/complexity/

https://discrete.gr/complexity/

https://discrete.gr/complexity/

$$f(n) = 6n^2 + 3n$$

$$f(n) = O(n^{2}) \longrightarrow f(n) = O(n^{3})$$

$$f(n) = \Theta(n^{2}) \longrightarrow f(n) \times \Theta(n^{3})$$

$$f(n) = \Omega(n^{2}) \longrightarrow f(n) \times \Omega(n^{3})$$

upper bound

$$c_1 n^2 - c_2 n^3 = n^2 (c_1 - c_2 n)$$

$$f(n) = O(n^{2}) \longrightarrow f(n) \times O(n)$$

$$f(n) = \Theta(n^{2}) \longrightarrow f(n) \times \Theta(n)$$

$$f(n) = \Omega(n^{2}) \longrightarrow f(n) = \Omega(n)$$
 lower bound

$$c_1 n^2 - c_2 n = n(c_1 n - c_2)$$

$O(n^2)$	\longrightarrow $O(n^3)$	always true
$\Theta(n^2)$	\longrightarrow $\Theta(n^3)$	always false
$\Omega(n^2)$	\longrightarrow $\Omega(n^3)$	generally not true

$$O(n^2)$$
 \longrightarrow $O(n)$ generally not true $\Theta(n^2)$ \longrightarrow $\Theta(n)$ always false $\Omega(n^2)$ \longrightarrow $\Omega(n)$ always true

References

- [1] http://en.wikipedia.org/[2]