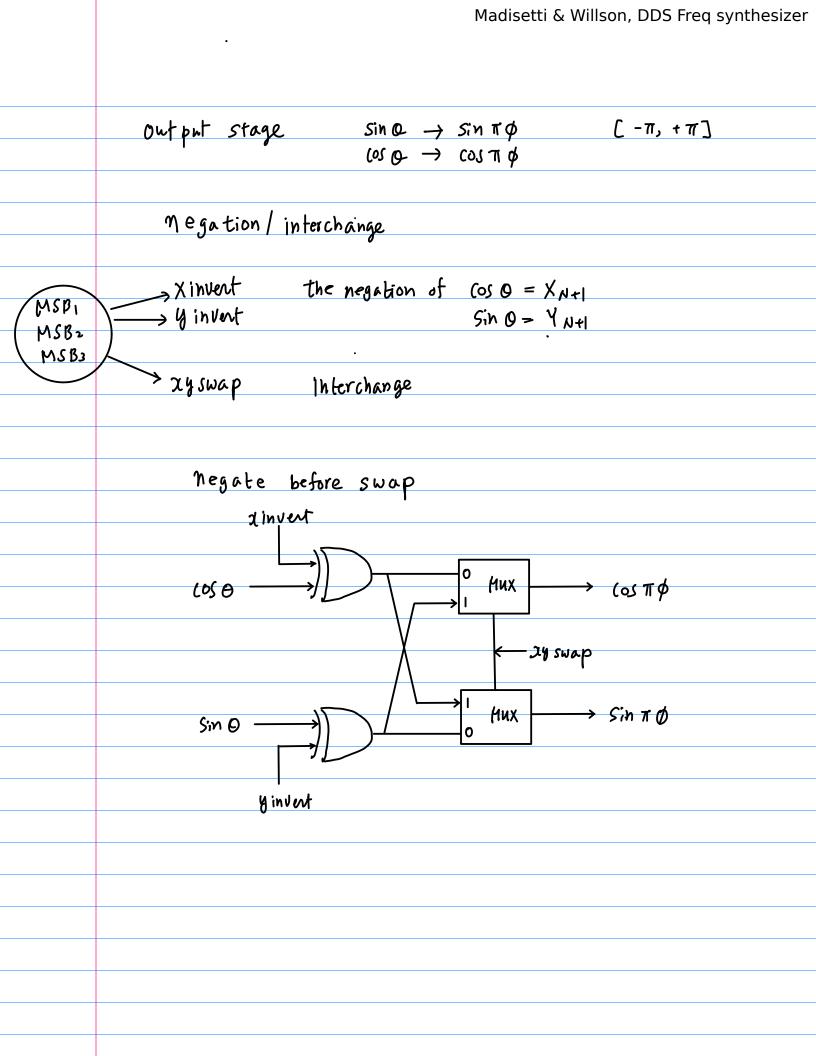
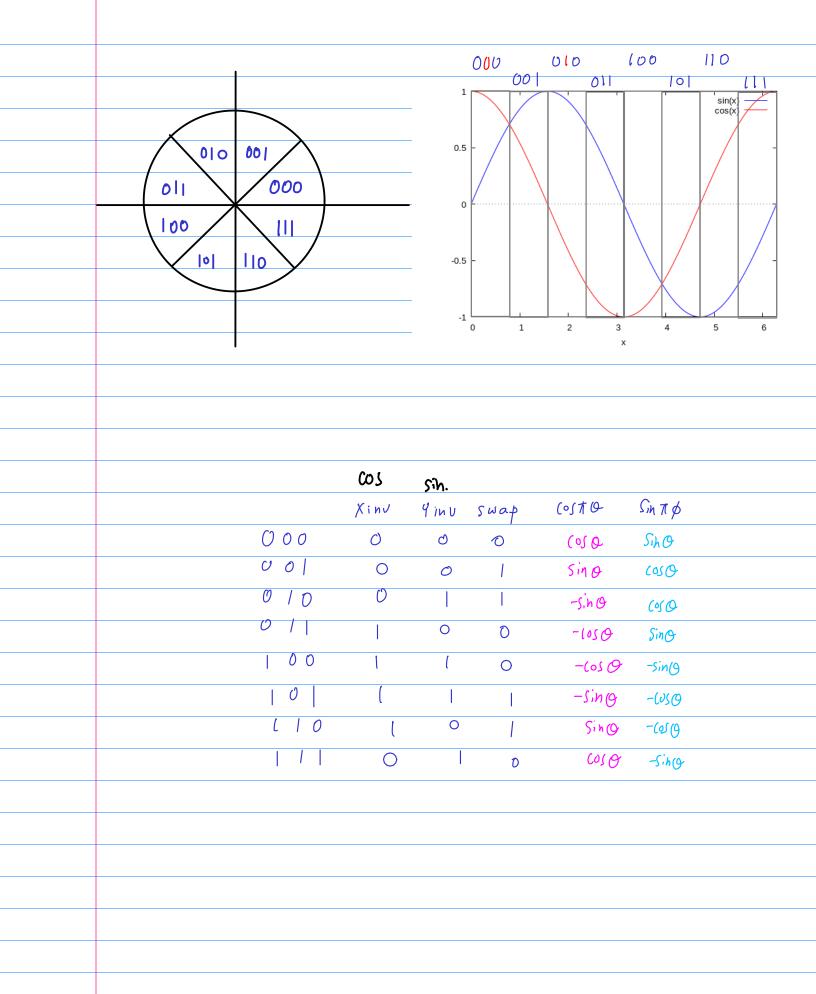
Hybrid CORDIC 2.A Sine/Cosine Generator

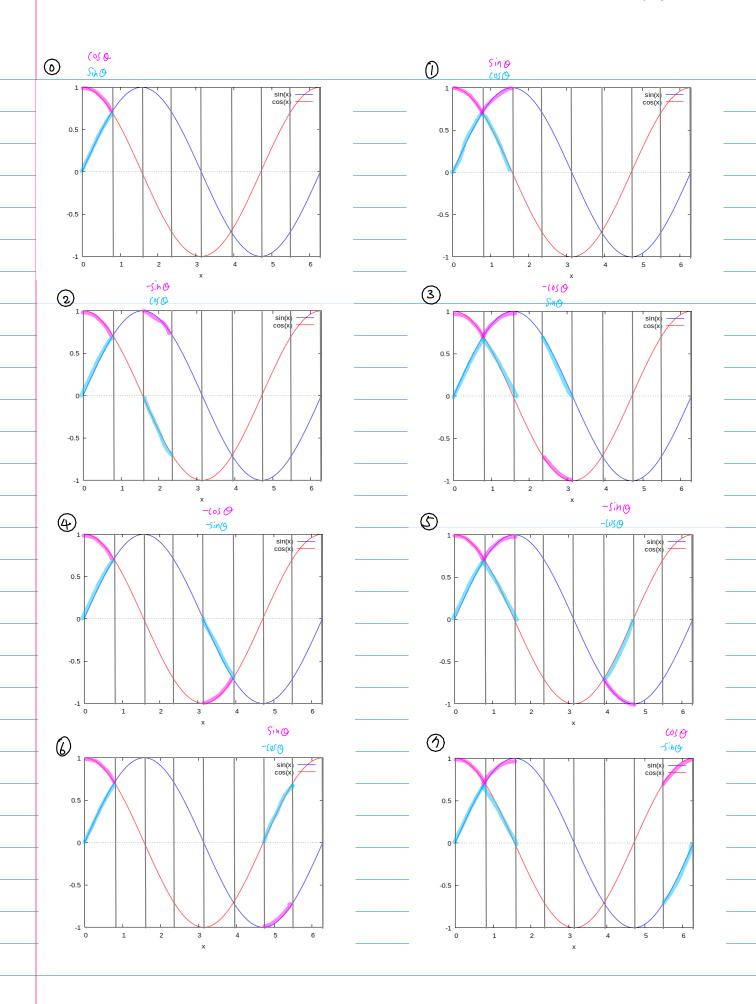
20170706

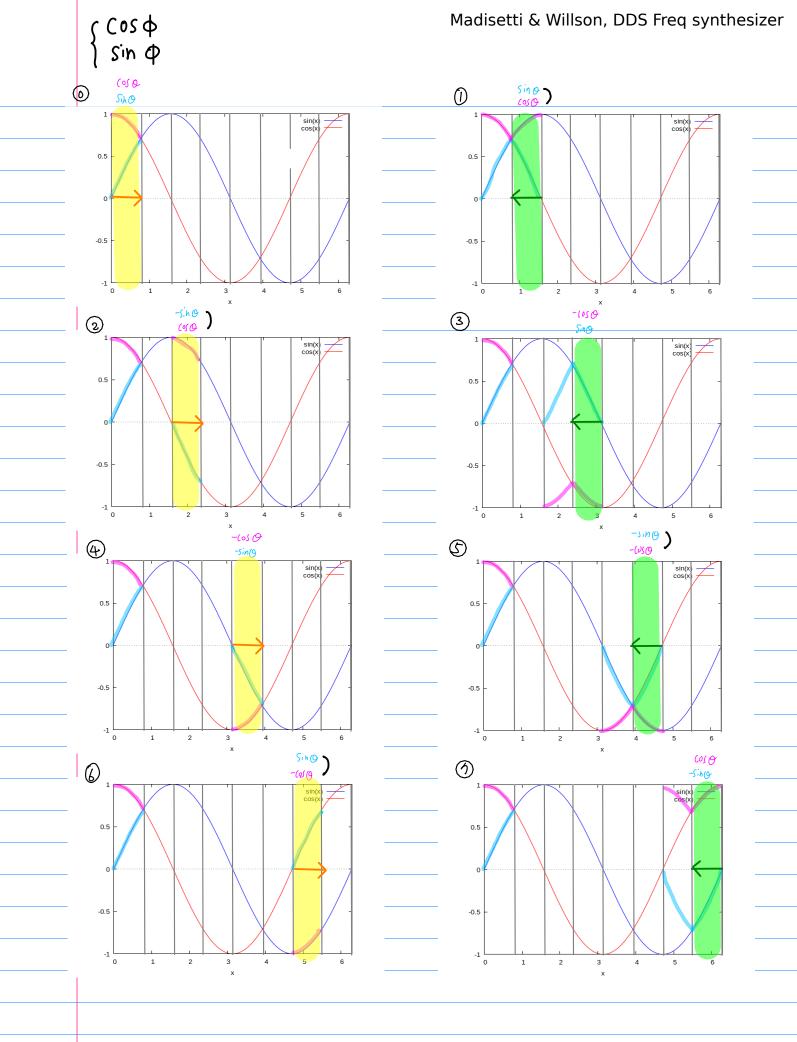
Copyright (c) 2015 - 2017 Young W. Lim.


Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

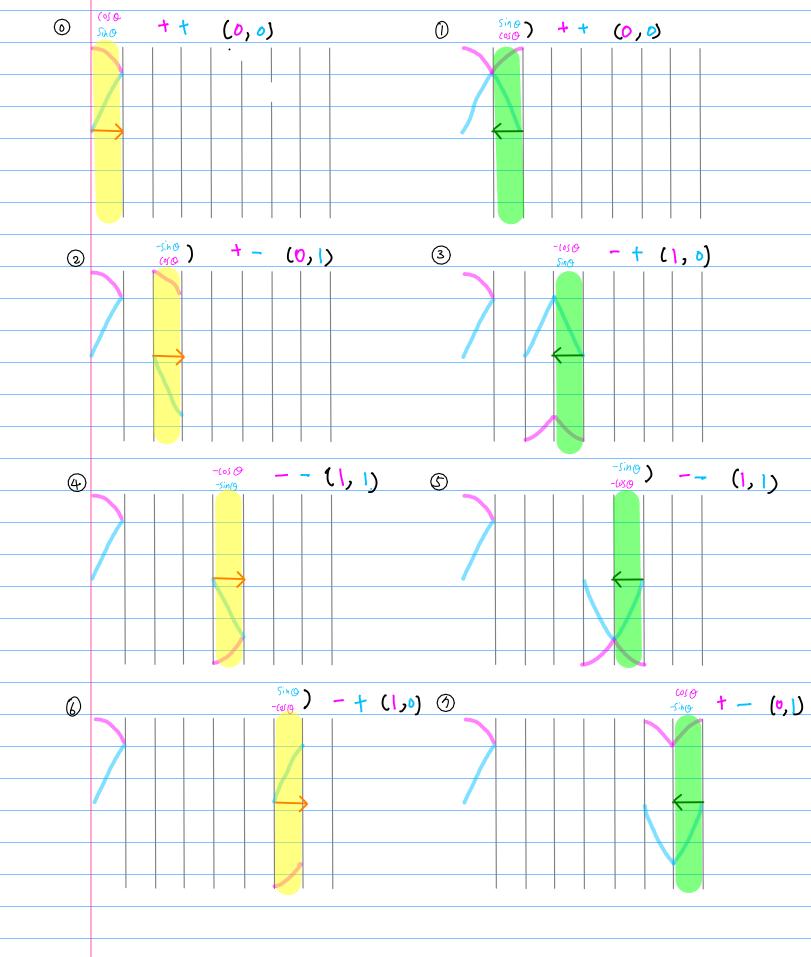

Wilson ROM based Sinel Cosine Generation
[24] Fu & Willson Sine / Cosine Generation
Rd M-based
for high resolution, ROM size grows exponentially
Guater -wave symmetry
Sin
$$\theta = \cos(\frac{\pi}{2} - \theta)$$

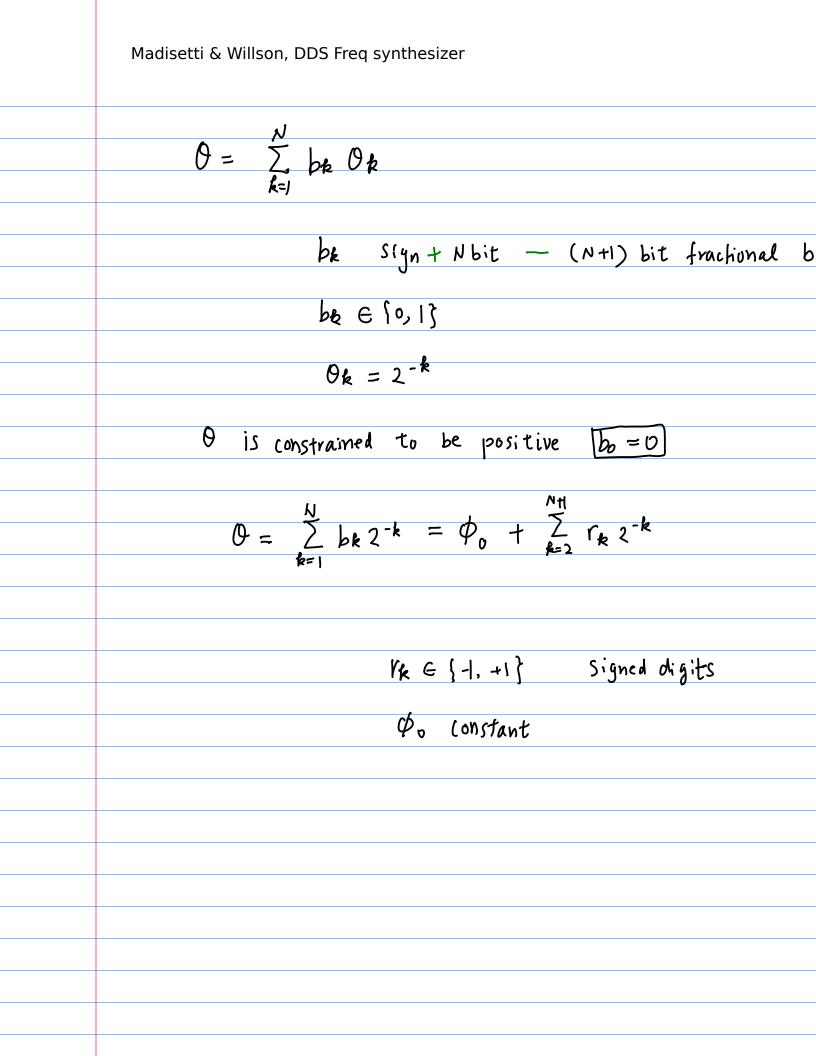
 $\oint EO, 2\pi 3 \longrightarrow EO, \frac{\pi}{2}]$
conditionally interchanging inputs Xo & Yo
conditionally interchanging and megating outputs X & Y
 $X = X_0 \cos \phi - Y_0 \sin \phi$
 $Y = Y_0 \cos \phi + X_0 \sin \phi$
Madisetti VLSL arch




 $\pi/2 + r$ π/4 r (= π φ') $\pi/_2 - \gamma$ T+r T+T/2+r for frequency synthesis argument: signed normalized by TT angle [-1, 1] binary representation of a radian angle required $\begin{array}{cccc} [-1, 1] & \longrightarrow [0, \pi/4] & \longrightarrow & \text{Sine/cosine generator} \\ \phi & 0 & 1 \end{array}$ $\pi\phi \leftarrow$ (i) a phase accumulator ϕ [4, 1] (2) a radian converter $\phi \rightarrow \phi$ 3 a sine/cosine generator Sin O, cos O

Madisetti & Willson, DDS Freq synthesizer
·





Madisetti & Willson, DDS Freq synthesizer

Madisetti & Willson, DDS Freq synthesizer Sin TI Ø Xinu 9 in U (05# Ø swap 000 ് \mathcal{O} Siho О (050 001 0 0 Sino cosO I O I 010 -sin Q (050 011 0 0 -loso Sino (001 I 0 -sin(9 -(050 0 l -6050 I -sing 0 L | O 1 -(05(9) 1 Sino | | | 0 D 6050 -Sing Ø ტ Ο \mathcal{O} ()0 I (I 0 1 \cap ОЮ 00 \bigcirc 10 ·| | ١ 0 0 1

 ① Subrotation by 2-k
 ② equal ① half rotations by 2^{-k+}
 ③ Subrotation
 2 equal opposite half rotations by ±2^{-k+} Binary Representation be = 1 : rotation by 2-k be = 0; Zero rotation b-th rotation Fixed rotation by 2^{-k-1} $\int Pos rotation \leftarrow b_k = 1$ $Meg rotation \leftarrow b_k = 0$ Combining all the fixed rotations -> initial fixed votation

$$\frac{b_{1}}{2^{-1}} \frac{b_{2}}{2^{-2}} \frac{b_{3}}{2^{-3}} \frac{b_{N}}{2^{-N}}$$

$$\frac{2^{-1}}{2^{-1}} \frac{2^{-2}}{2^{-2}} \frac{2^{-3}}{2^{-3}} \frac{2^{-N}}{2^{-N}}$$

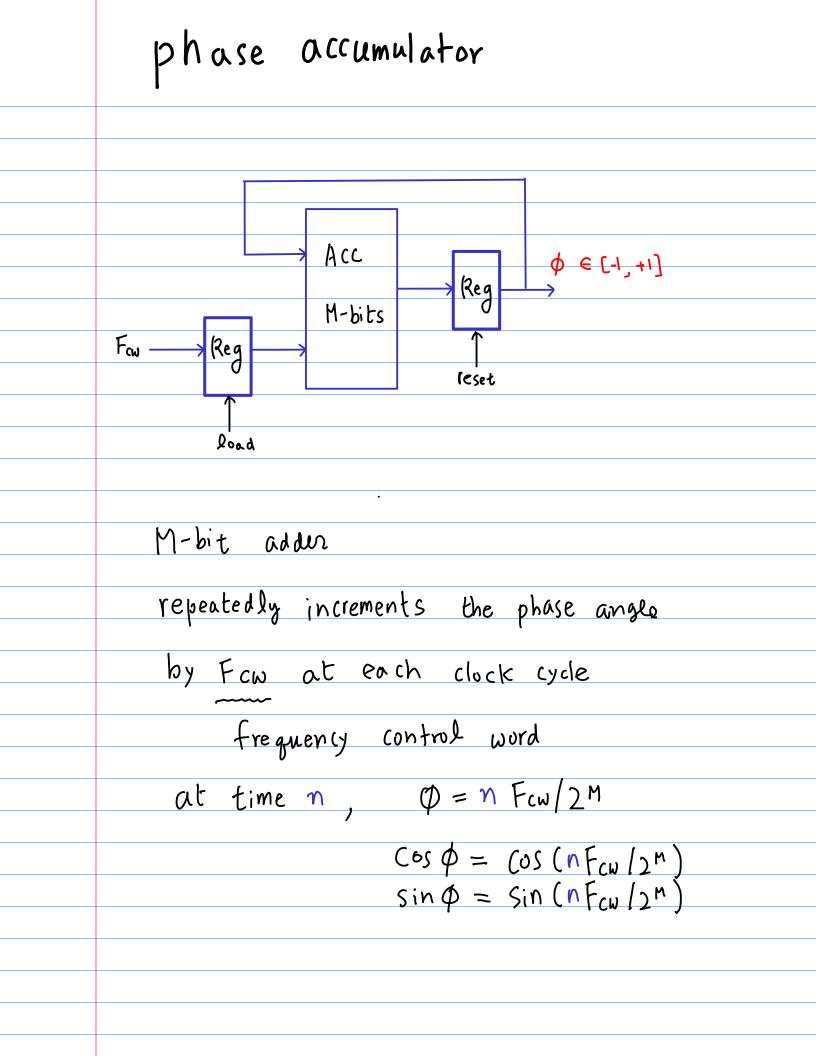
$$\frac{(b_{1}=1)}{2^{-2}} \frac{(b_{2}=1)}{2^{-2}} \frac{(b_{2}=1)}{2^{-2}} \frac{(b_{2}=1)}{2^{-2}} \frac{(b_{2}=1)}{2^{-2}} \frac{(b_{2}=1)}{2^{-2}} \frac{(b_{2}=1)}{2^{-2}} \frac{(b_{2}=0)}{2^{-2}} \frac{(b_{2}=0$$

Signed Digit Recoding the rotation after recoding a fixed initial rotation ϕ_o a sequence of D/O rotations $b_k = 1$ + 2^{-k-1} rotation $b_k = 0$ - 2^{-k-1} rotation $Y_{B} = (2b_{B-1} - 1)$ $2 \cdot |-| = + | \qquad b_{k-1} = 1 \longrightarrow f_k = + |$ $2 \cdot 0 - | = -| \qquad b_{k-1} = 0 \longrightarrow r_k = -|$ The recoding need not be explicitly performed Simply replacing be = 0 with -This recoding maintains a constant scaling factor K

Binary Representation { be } 2-2 23 27 2 * 216 b1 b2 b3 ЬЦ bis **r**17 r2 ri Ø. 1 2- 2- 2- 2- 2-5 2-16 2-19 Signed Digit Recoding { Tk }

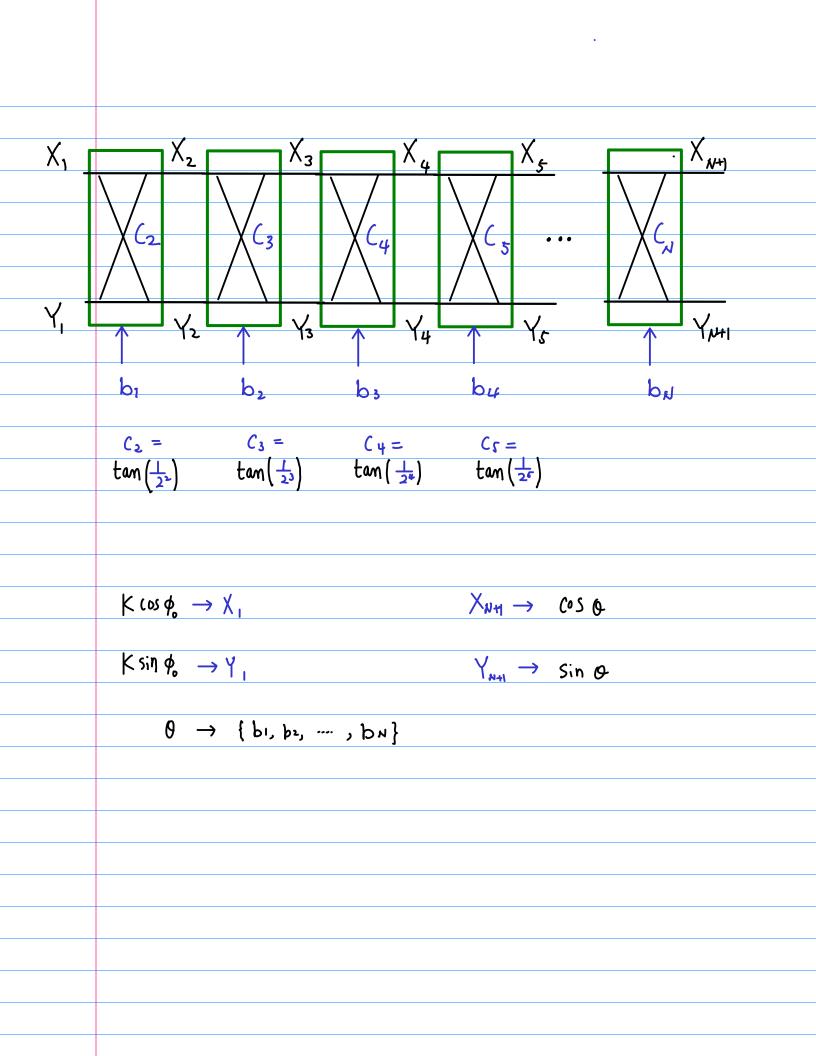
The scaling K.
The initial rotation
$$\Phi_0$$

rotation Starting point
 $(X_0, Y_0) = (K \cos \phi_0, K \sin \phi)$
 $-fixed$
 $- no error build up$
 $- rotation direction$
 $immediately obtained from the binary representation
 \rightarrow no need for comparison
the sabangles $\Theta_{\mathbf{z}} = 2^{-\mathbf{z}}$ used in recoding
the sabangles $\Theta_{\mathbf{z}} = 2^{-\mathbf{z}}$ used in CorDIC
 $tan \theta_{\mathbf{k}}$ multipliers used
 $im the first few subrotation stages$
Cannot be implemented
 $\Delta s = simple = shift-and-add Operations$
 $- \Rightarrow ROM$ implementation
 $Peduced Chip area
higher Operating Speed.$$



Arch; tecture $\phi \in [1,+1]$ phase accumulator Ø→Ø∈[0,ቺ] 2 radian conventer 3 Sine/cosine generator Sin(0) (05(0) $\varsigma_{ih}(\pi\phi)$ $(\sigma_{ih}(\pi\phi))$ Output Stage 4

Overflowing 2's complement accumulator normalized by TI angle ϕ Need radian angle $\Theta \in [0, \frac{\pi}{4}]$ 0 < 0 < 1 rad N-bit binary representation of O controls the direction of subrotation N-bit precision of cos 0 & sin 0 Output stage $0 \rightarrow \pi \phi$ sin Q → Sin TP $(os 0 \rightarrow (os \pi \phi)$


Radian Converter normalized angle \$ MSB2 MSB3 MSBI • • • Quadrant of U.half L. half π¢ Stored to interchange/negate 0 0 MSB3 • • • アナモニ アダナシ $\gamma = \pi \phi'$ $\gamma + \pi = \pi \phi' + \pi$ よ=11+モ+エダ 00 0 \ 10 11

Ist Quadrant MSB3 (\mathcal{T}) 0 • • • 0 Upper Half Quadrant r $MSB_3 = 1$ <u><u>T</u></u> 4 了了 =: hppen Haif (MSB3=1) r< = : Lower Half (MSB3 = 0) <u><u>T</u></u> 4 $(OS r = Sin(\frac{\pi}{2} - r))$ $\frac{11}{2} - 7$ $\sin \gamma = \cos\left(\frac{\tau}{2} - \gamma\right)$ とうそ モーとくも

 ϕ' o O MSB3 • • • $MSB3 = 1 \quad (p') = \frac{\pi}{4}$ $\phi'' = \frac{\pi}{2} - \phi'$ 0.5 1 0 0 • • • $\bigcirc \phi'$ 0 0 MSB3 • • • $\{MSB3=0 \quad Q''=Q'$ $M_{SB_3} = 1$ $\phi'' = 0.5 - \phi'$ $Q = T \phi''$ (Handwired Multiplier) 0<0<5 $\phi \longrightarrow \phi' \longrightarrow \phi''$ Ist Quad Lower Half

Sine Cosine Generator Subrotation $X_{k+1} = X_k - (Y_k \tan \Theta_k) Y_k$ YRH = YR + (rk tan Ok) XR $\begin{bmatrix} X_0 \\ -Sin \Theta \end{bmatrix} = \begin{bmatrix} \cos \Theta & -Sin \Theta \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$ Sin $\Theta \quad \cos \Theta \end{bmatrix} \begin{bmatrix} Y_0 \end{bmatrix}$ $= (0SO) \begin{bmatrix} 1 & -tanO \end{bmatrix} \begin{bmatrix} X_{O} \\ \\ tanO & 1 \end{bmatrix} \begin{bmatrix} Y_{O} \end{bmatrix}$ $\Theta = \sigma_0 \Theta_0 + \sigma_1 \Theta_1 + \cdots + \sigma_N \Theta_N$ $\begin{bmatrix} X_{0} \\ -t_{0} \end{bmatrix} = \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} = \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & \sigma_{N} & \sigma_{N} \\ t_{0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & -t_{0}$ K = (050,00 · (050,01 ··· (050,01)

$ \begin{array}{c} \chi_{k_{1}} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & $
Vie or ben Vie or ben Vie Xie (Butterfly Vie Yie Vie Yie

the initial (Xo, Yo) always the same merge the first B/3 buttenflies -> 2^{B/3} words RoM implementation -> no need tan Or multipliers \rightarrow {b₁, b₂, ..., b₁ b₃} \Rightarrow address accesses $\cos \left(\phi_{0} + \sum_{k=1}^{B/3} b_{k} 2^{-k+1} \right)$ $\sin(\phi_0 + \sum_{k=1}^{B/3} b_k 2^{-k+1})$ Lover Half of the 1st Quadrant - all positive XR & YR - no need sign extension - reduce the loads - high speed

Merging Buttenflies
 Merge m final butterflies
 $ \begin{array}{c} \begin{pmatrix} \chi_{k} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
$X_{k+m} = X_k - Y_k \sum_{i=k}^{k+m-1} Y_i \tan 2^{-i}$
i=k k+m-j
$Y_{k+m} = Y_k + X_k \sum_{i=k}^{k+m-1} V_i \tan 2^{-i}$
Valid merging k>/ (B-1)/2
$\tan(2^{-i}) = 2^{-i}$ $k \ge \beta/3$
 $\tan(2^{\circ}) - 2^{\circ} - \kappa^{\prime} - \beta^{\prime}$
lookahead by m
the individual terms in the summation
can be computed independently
 and summed in parallel

$$X_{k+n} = X_k - Y_k \sum_{i=k}^{km-1} r_i \tan 2^{i}$$

$$Y_{k+m} = Y_k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow r_k + x_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow r_k + r_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow r_k + r_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow r_k + r_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow r_k + r_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$Y_k \xrightarrow{-r_k} \longrightarrow r_k + r_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

$$+ r_k = r_k \sum_{i=k}^{i} r_i \tan 2^{i}$$

Output Stage sin πφ Sin O cy πφ los O 0 ∈ [0, \] → Ø ∈ [1, +1] Snegation Linter change * N-gation before interchange

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{4}{3}$ $\frac{4}$	$\frac{4}{3}$	nord	mali zed	angle	ф				
$\frac{\pi \phi}{\text{Stored to inter change / negate}}$ $\frac{\text{MSB of }\phi}{\text{O O O }} \stackrel{\phi}{\otimes} \frac{X_{inv}}{\text{Y}_{inv}} \frac{Y_{inv}}{\text{Swap}} \frac{\cos \pi \phi}{\sin \theta} \frac{Sih \pi \phi}{Sih \pi \phi}$ $\frac{O O O}{O} \stackrel{\phi}{\otimes} 0 O O O O (\cos \theta) \frac{Sih \pi \phi}{\sin \theta}$ $\frac{O O O}{O O O} \stackrel{\phi}{\otimes} 0 O O O O (\cos \theta) \frac{Sih \pi \phi}{\cos \theta}$ $\frac{O O O O}{O O O O O O (\cos \theta)} \frac{Sih \theta}{\cos \theta}$ $\frac{O O O O}{O O O O O O O (\cos \theta)} \frac{Sih \theta}{\cos \theta}$ $\frac{O O O O}{O O O O O O O (\cos \theta)} \frac{Sih \theta}{\cos \theta}$ $\frac{O O O O}{O O O O O O O O (\cos \theta)} \frac{Sih \theta}{\cos \theta}$ $\frac{O O O O O O O O O O O (\cos \theta)}{O O O O O O O O O O (\cos \theta)}$ $\frac{O O O O O O O O O O O (\cos \theta)}{O O O O O O O O O O O (\cos \theta)}$ $\frac{O O O O O O O O O O O O O (\cos \theta)}{O O O O O O O O O O O O O O O O O O O $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MSB	SI MSB2	MSB3				•••	
MSB of ϕ Xinv Yinv Swap Cos $\pi \phi$ Sin $\pi \phi$ 0 0 0 0 0 0 Cos ϕ Sin ϕ 0 0 0 0 0 0 Cos ϕ Sin ϕ 0 0 1 1 0 0 Cos ϕ Sin ϕ 0 0 1 1 0 0 Cos ϕ Sin ϕ 0 0 1 0 0 1 Sin ϕ Cos ϕ 0 1 0 0 1 1 -sin ϕ Cos ϕ 0 1 0 0 1 1 -sin ϕ Sin ϕ 0 1 1 0 0 -cos ϕ Sin ϕ 1 0 0 1 1 0 -cos ϕ Sin ϕ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sto	red to i	nter change	e / nega	te			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MSB of	φ φ	X:ahv	Yinv	Swap	Cos π ø	Sihttø	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	001		0	0	0	Costo	sin O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	1 (1)	0	0	1	Sino	(050	
100 (4) 110 $-\cos - \sin \theta$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0		1	-sin(9	(020)	
	$ 0 (S) -\sin \theta - \cos \theta$ $ 1 0 (S) 0 Sin \theta - \cos \theta$ $ 1 (T) (T) 0 0 0 (S - Sin \theta)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1		l			- (vs O	SinO	
$ 0 $ (c) $ 1 $ -sin θ -los θ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101		1	l	D	-(050	- SinO	
	(5) 0 0 (050 - 5in0)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		(1	1	-sin O	- cosO	
		$\begin{array}{c c} \hline & & \\ \hline \\ \hline$		0 (6)	1	0				
(f) (O) (os - sin O)			<u> </u>	<u> </u> (1)	U	(6	(050	-SinO	
						0				
		$(\mathbf{q}) \setminus (\mathbf{q})$		— — — —						
			(Φ)		\setminus / /	മ				