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First-Order Stationary Processes

First Order Stationary

N Gaussian random variables

Definition

if the first order density function does not change with a shift in
time origin
fx(Xl; tl) = fx(Xl; t1 +A)

must be true for any timet; and any real number A if X(t) is to be
a first-order stationary
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First-Order Stationary Processes

Consequences of stationarity
N Gaussian random variables

Definition

fx(x,t1)is independent of t;
the process mean value is a constant

mx(t) = X = constant
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First-Order Stationary Processes

the process mean value
N Gaussian random variables

mx(t) = X = constant
mx(tl) = /Xfx(X;tl)dX

mx(tz): /Xfx(X;tQ)dX

—oo

mx(tl) = mx(t1 +A)
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First-Order Stationary Processes

Second-Order Stationary Process

N Gaussian random variables

Definition

if the second order density function does not change with a shift in
time origin
fx(x1, %2 t1, t2) = fx(x1, 2 t1 + A, 2 + A)

must be true for any timety,t; and any real number A if X(t) is to
be a second-order stationary
Auto-correlation function

Rxx(t,t+1) = E[X(t)X(t+7)] = Rxx(7)
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First-Order Stationary Processes

N-order Stationary Processes
N Gaussian random variables

Definition
if the second order density function does not change with a shift in
time origin

fx (X1, xnitr, - tn) = fx(xa, o xnv i+ Aty + A)

must be true for any timety,...,ty and any real number A if X(t) is
to be a second-order stationary
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First-Order Stationary Processes

Wide Sense Stationary Process
N Gaussian random variables

Definition

mx(t) = X = constant

E[X()X(t+7)] = Rxx(7)
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Correlation and Covariance Functions

The properties of autocorrelation functions (1)

N Gaussian random variables

|Rxx(7)| < Rxx(0)
Rxx(—T) = Rxx(T)
Rxx(0) = E [X?(t)]

PIIX(t+17)=X(t)| > €] = %(Rxx(o) — Rxx(7))
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Correlation and Covariance Functions

The properties of autocorrelation functions (2)

N Gaussian random variables

Definition

if X(t) =X+ N(t) where N(t) is WSS, is zero-mean, and has
autocorrelation function Ryn(7) — 0 as |t| — oo, then

lim Rxx(’b') :y2

|t]—eo
if X(t) is mean square periodic, i.e, there exists a T # 0 such that
E [(X(t+ T)—X(t))?] =0 for all ¢, then Rxx(t) will have a
periodic component with the same period
Rxx(7) cannot have an arbitrary shape
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Correlation and Covariance Functions

Crosscorrelation functions (1)

N Gaussian random variables

Rxy(t1,t2) = E[X(t1) Y (t2)]
ny(t, t+T) = E[X(t) Y(t+f)] = ny(f)

ny(l', t+ T) =0

then X(t) and Y(t) are called orthogonal processes
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Correlation and Covariance Functions

Crosscorrelation functions (2)

N Gaussian random variables

Definition
if X(t) and Y(t) are statistically independent

Rxy(t,t+71)=E[X(t)Y(t+7)] = mx(t)mx(t+7)
if X(t) and Y(t) are stistically independent and are at least WSS,

ny(T): Y

which is constant
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Correlation and Covariance Functions

The properties of crosscorrelation functions (1)

N Gaussian random variables

Rxy(t) = Rxy(—1)

|Rxy (7)| = v/ Rxx(0) Ry (0)

[Re (2)] < 5 [Rxx(0) + Ry (0]
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Correlation and Covariance Functions

The properties of crosscorrelation functions (2)

N Gaussian random variables

Ryx(—1) = E[Y(£)X(t— )] = E[Y (s + £)X(s)] = Rxy (1)

E[{Y(t+7)+aX(t)P’] 20

the geometric mean of two positive numbers cannot exceed their
arithmetic mean
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Correlation and Covariance Functions
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