
| Laurent Series and z-Transform     |  |
|------------------------------------|--|
| - Properties of a Geometric Series |  |
| Examples A                         |  |
| LAUTIPIES A                        |  |

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

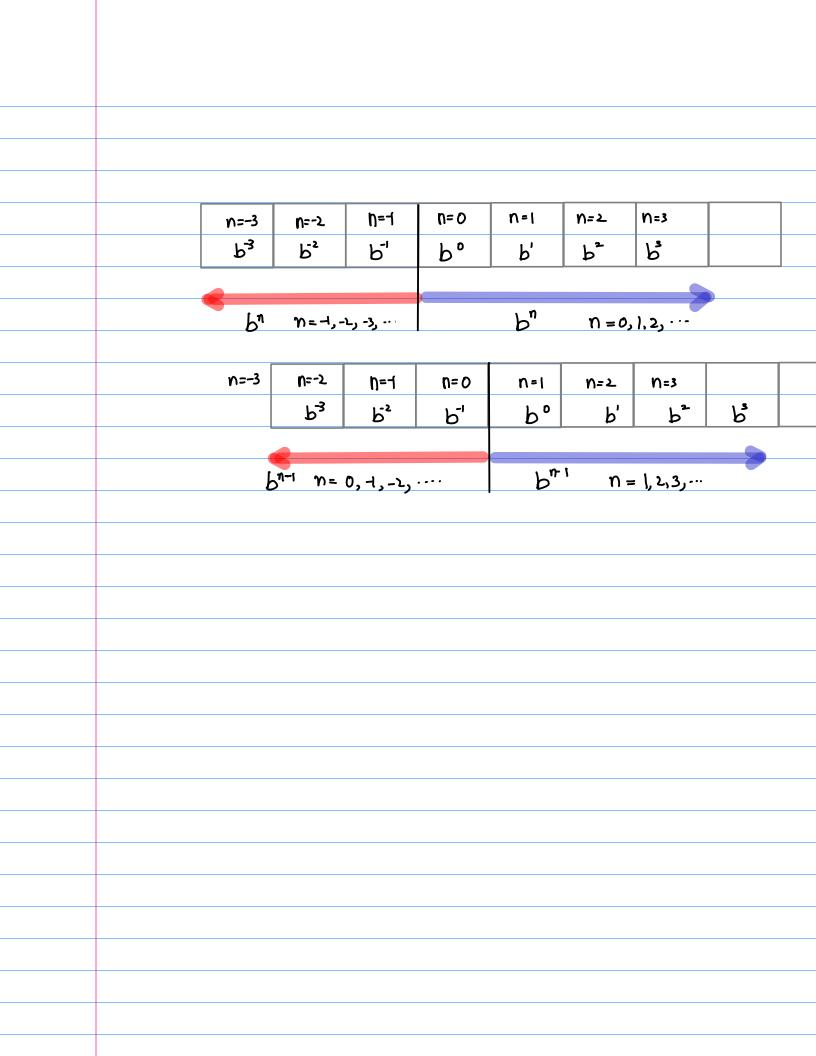
| Causal signal          | An n≥0 |  |
|------------------------|--------|--|
| <br>anti-causal signal |        |  |
| Laurent Series         | f (z)  |  |
| E - Transform          | X (3)  |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |
|                        |        |  |



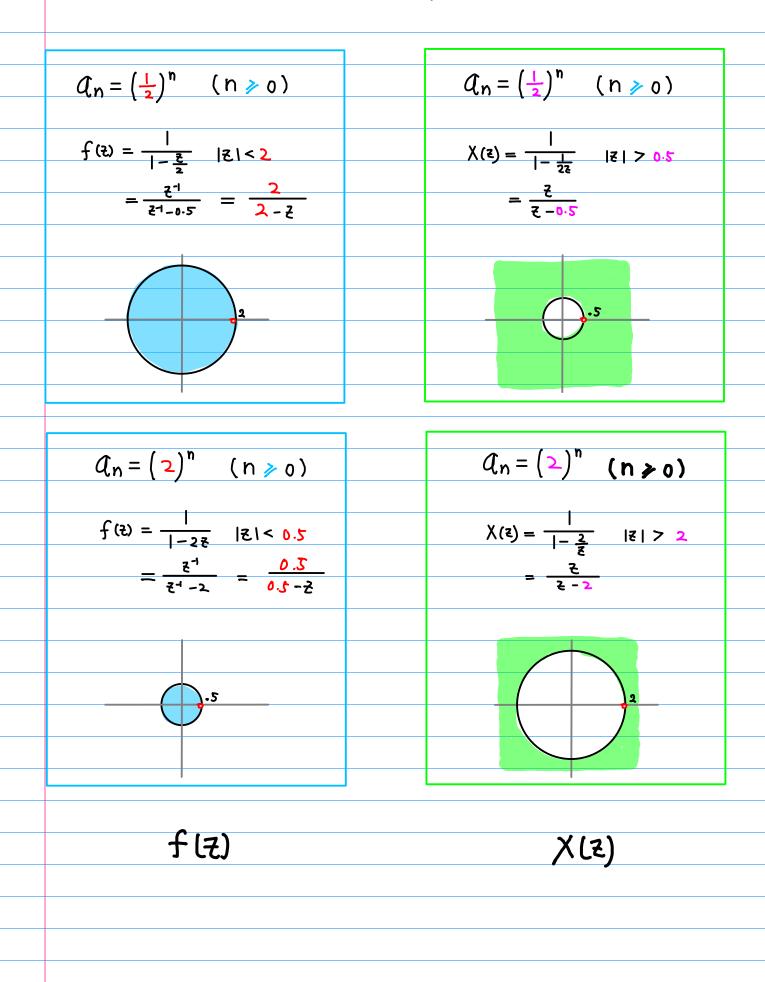
2 Causal  $(n \ge 0)$   $(l_n = (2)^n$  $\mathcal{Q}_{n}: (2)^{\circ}, (2)^{\circ}, (2)^{\circ}, \cdots (n \geq 0)$ n=0 n=1 n=2  $f(z) = (2)^{\circ} z^{\circ} + (2)^{\circ} z^{\circ} + (2)^{\circ} z^{2} + \cdots = \frac{1}{1-2z} = \frac{0.5}{0.5-z}$ 2|2| < | [7] < 0.5  $\chi(z) = (2)^{2} z^{2} + (2)^{1} z^{-1} + (2)^{2} z^{-2} + \cdots = \frac{1}{1 - \frac{2}{z}} = \frac{z}{z - 2}$  $\frac{2}{|\mathcal{E}|} < |$  | $\mathcal{E}| > 2$  $\mathcal{Q}_n = (2)^n \quad (n \ge 0)$  $\mathcal{Q}_n = (2)^n \quad (n \ge 0)$  $\chi(z) = \frac{|z| > 2}{|-\frac{2}{z}}$  $f(z) = \frac{|}{|-2z|}$  |z| < 0.5 $-\frac{0.5}{0.5-3}$  $=\frac{z}{z-2}$ 12 1.5

3 Anti-causal (n < 0)  $a_n = (\frac{1}{2})^n$  $\mathcal{Q}_{n}: \left(\frac{1}{2}\right)^{-1}, \left(\frac{1}{2}\right)^{-2}, \left(\frac{1}{2}\right)^{-3}, \dots \left(n < 0\right)$ n=-1 n=-2 n=-3  $f(z) = (2)^{2} z^{-1} + (2)^{2} z^{-2} + (2)^{3} z^{-3} + \cdots = \frac{\frac{2}{2}}{|-\frac{2}{3}|} = \frac{2}{2}$  $\frac{2}{|\mathcal{Z}|} < | \qquad |\mathcal{Z}| > 2$  $\chi(z) = (2)^{2} z^{1} + (2)^{2} z^{2} + (2)^{3} z^{3} + \cdots = \frac{2z}{1-2z} = \frac{z}{0.5-z}$ 2|2| < | |2| < 0.5  $\mathcal{Q}_n = \left(\frac{1}{2}\right)^n \quad (n < 0)$  $\mathcal{Q}_n = \left(\frac{1}{2}\right)^n \quad (n < 0)$  $f(z) = \frac{\frac{2}{z}}{|-\frac{2}{z}|} |z| > 2$  $\chi(s) = \frac{2s}{|-2s} \quad |s| < 0.2$  $\frac{2}{2-\frac{2}{2-\frac{2}{2}}}$ 

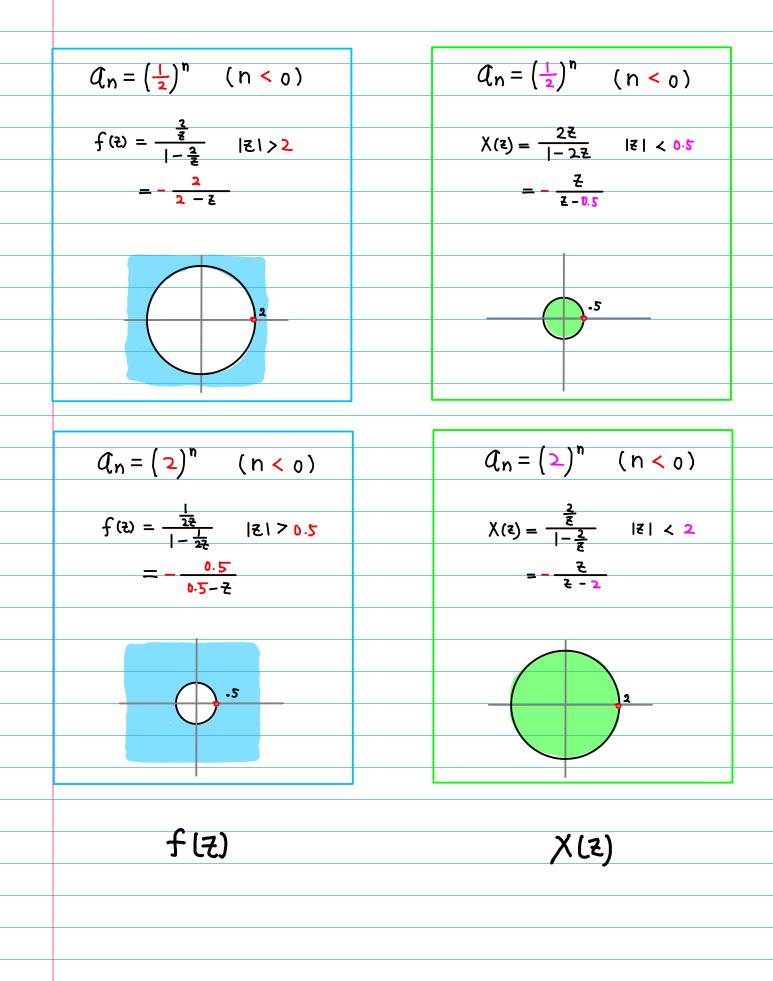
(4) Anti-causal (n < 0)  $a_n = (2)^n$  $Q_n: (2)^{-1}, (2)^{-2}, (2)^{-3}, \cdots (n < 0)$ n=-1 n=-2 n=-3  $f(z) = \left(\frac{1}{2}\right)^{1} \overline{z}^{1} + \left(\frac{1}{2}\right)^{2} \overline{z}^{2} + \left(\frac{1}{2}\right)^{3} \overline{z}^{-3} + \cdots = \frac{\frac{1}{2z}}{1 - \frac{1}{2z}} = \frac{0.5}{\overline{z} - 0.5}$ <u>|</u> 2|₹| < | (7| > 0.5  $\chi(z) = \left(\frac{1}{2}\right)^{1} \overline{z}^{1} + \left(\frac{1}{2}\right)^{2} \overline{z}^{2} + \left(\frac{1}{2}\right)^{3} \overline{z}^{3} + \cdots = \frac{\frac{z}{2}}{1 - \frac{z}{2}} = \frac{z}{2 - \overline{z}}$  $\frac{|\xi|}{2} < | \qquad |\xi| < 2$  $\mathcal{Q}_n = (2)^n \quad (n < 0)$  $\mathcal{Q}_n = (2)^n \quad (n < 0)$  $f(z) = \frac{1}{2z}$  (z) > 0.5  $\chi(z) = \frac{\frac{z}{2}}{|-\frac{z}{2}|} \quad |z| < 2$  $= -\frac{0.5}{0.5-7}$  $= -\frac{2}{7}$ 2


5 Causal (n > 0)  $(l_n = (\frac{1}{2})^{n-1}$  $f(z) = \left(\frac{1}{2}\right)^{0} \frac{z^{1}}{z^{1}} + \left(\frac{1}{2}\right)^{1} \frac{z^{2}}{z^{2}} + \left(\frac{1}{2}\right)^{2} \frac{z^{3}}{z^{3}} + \cdots = \frac{z}{1 - \frac{z}{2}} = \frac{2z}{2 - z}$  $\frac{|\mathcal{Z}|}{2} < |$   $\{\mathcal{Z}\} < \Sigma$  $\chi(z) = \left(\frac{1}{2}\right)^{0} z^{-1} + \left(\frac{1}{2}\right)^{1} z^{-2} + \left(\frac{1}{2}\right)^{2} z^{-3} + \cdots = \frac{\frac{1}{2}}{1 - \frac{1}{22}} = \frac{1}{z - 0.5}$ 1/2121 < 1 (2)70.5  $\mathcal{Q}_n = \left(\frac{1}{2}\right)^{n-1} (n > 0)$  $\mathcal{Q}_n = \left(\frac{1}{2}\right)^{n-1} (n > 0)$  $\chi(z) = \frac{\frac{1}{2}}{\frac{1}{1-\frac{1}{22}}} \qquad |z| > 0.5$  $f(z) = \frac{z}{|-\frac{z}{2}|} |z| < 2$  $=\frac{1}{\xi^{1}-0.5}=\frac{2\xi}{2-\xi}$ <u>\_\_\_\_</u> <u>ا</u> **}**-5

6 Causal (n>0)  $(l_n = (2)^{n-1})$  $Q_n: (2), (2), (2), \dots (n > 0)$  $f(z) = (2)^{\circ} z^{1} + (2)^{1} z^{2} + (2)^{2} z^{3} + \cdots = \frac{z}{1-2z} = \frac{0.5z}{0.5-z}$ 2|2| < | (7) < 0.5  $\chi(z) = (2)^{2} z^{-1} + (2)^{1} z^{-2} + (2)^{2} z^{-3} + \cdots = \frac{\frac{1}{2}}{1 - \frac{2}{2}} = \frac{1}{2 - 2}$  $\frac{2}{|z|} < |$  |z > 1 $\mathcal{A}_n = (2)^{n-1} (n > 0)$  $\mathcal{Q}_n = \left(\frac{2}{2}\right)^{n-1} \quad (n \ge 0)$  $\chi(z) = \frac{\frac{|z|}{z}}{|-\frac{2}{z}} \quad |z| > 2$  $f(z) = \frac{z}{|z|} = \frac{z}{|z|}$ 0.5-2 = 1 1.5

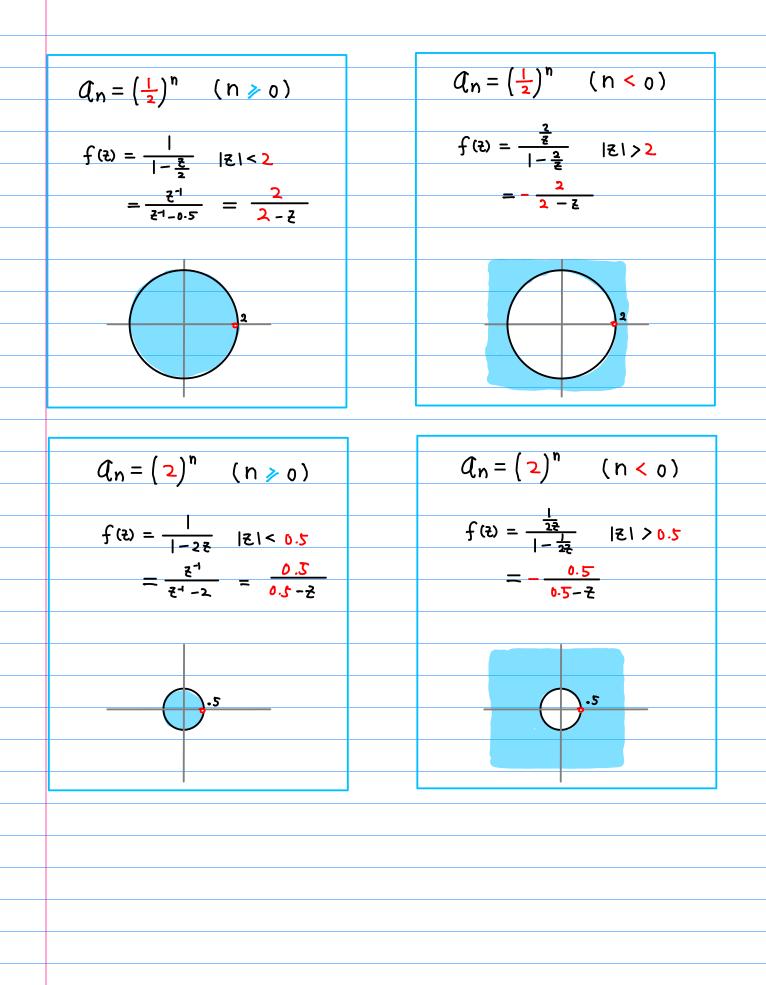

Inti-causal (n < 0)  $l_n = \left(\frac{1}{2}\right)^{n-1}$  $Q_{n}: \left(\frac{1}{2}\right)^{1}, \left(\frac{1}{2}\right)^{2}, \left(\frac{1}{2}\right)^{3}, \dots \left(n \leq 0\right)$ n=0 n=-1 n=-1  $f(z) = (2)^{1} z^{0} + (2)^{2} z^{1} + (2)^{3} z^{2} + \cdots = \frac{\frac{2}{1}}{1 - \frac{2}{3}} = \frac{2z}{z - 2}$  $\frac{2}{|\mathcal{Z}|} < | \qquad |\mathcal{Z}| > \mathcal{I}$  $\chi(z) = (2)^{2} z^{0} + (2)^{2} z^{1} + (2)^{3} z^{1} + \cdots = \frac{2}{|-2z|} = \frac{1}{0.5 - z}$ 2 | 2 | < | | 2 | < 0.5  $\mathcal{Q}_n = \left(\frac{1}{2}\right)^{n-r} (n \leq 0)$  $\mathcal{Q}_n = \left(\frac{1}{2}\right)^{n-1} \quad (n \leq 0)$  $f(z) = \frac{z}{1-\frac{2}{2}}$  |z| > 2 $\chi(s) = \frac{5}{|-2s|} |s| < 0.5$ = - <u>l</u> <u>Z</u> - 0.5  $\frac{22}{2-3}$ 2

(anti-causal 
$$(n \le 0)$$
  $a_n = (2)^{n-1}$   
 $a_n: (2)^{1}, (2)^{2}, (2)^{3}, \cdots, (n \le 0)$   
 $n=0$   $n=1$   $n=2$   
 $f(z) = (\frac{1}{2})^{1}z^{2} + (\frac{1}{2})^{1}z^{1} + (\frac{1}{2})^{1}z^{2} + \cdots = \frac{\frac{1}{2}}{1-\frac{1}{2z}} = \frac{0.5\frac{1}{2}}{2-0.5}$   
 $\frac{1}{2|z|} < 1$   $(z|>0.5$   
 $\chi(z) = (\frac{1}{2})^{1}z^{2} + (\frac{1}{2})^{2}z^{1} + (\frac{1}{2})^{2}z^{2} + \cdots = \frac{\frac{1}{2}}{1-\frac{1}{2z}} = \frac{1}{2-z}$   
 $\frac{|z|}{2} < 1$   $|z|<2$   
 $a_n = (2)^{n-1} (n \le 0)$   
 $f(z) = \frac{1}{1-\frac{1}{2z}}$   $(z|>0.5)$   
 $\chi(z) = \frac{1}{1-\frac{1}{2z}}$   $|z|<2$   
 $z = -\frac{0.52}{0.5-z}$   
 $z = -\frac{1}{2-2}$   
 $z = -\frac{1}{2-2}$ 


$$2 \longleftrightarrow \frac{1}{2}$$
(1)  $(n \ge 0)$   $d_n = (\frac{1}{2})^n$   $f(w) = \frac{2}{\lambda - z}$   $\chi(w) = \frac{2}{\xi - 0.5}$ 
(2)  $(n \ge 0)$   $d_n = (2)^n$   $f(w) = \frac{0.5}{0.5 + 2}$   $\chi(w) = \frac{2}{\xi - 2}$ 
(3)  $(n < 0)$   $d_n = (\frac{1}{2})^n$   $f(w) = -\frac{2}{\lambda - 2}$   $\chi(w) = -\frac{1}{\xi - 2}$ 
(4)  $(n < 0)$   $d_n = (2)^n$   $f(w) = -\frac{0.5}{0.5 + z}$   $\chi(w) = -\frac{1}{\xi - 2}$ 
(5)  $(n > 0)$   $d_n = (\frac{1}{2})^{n-1}$   $f(w) = \frac{0.5}{2 + 2}$   $\chi(w) = \frac{1}{\xi - 2}$ 
(6)  $(n < 0)$   $d_n = (\frac{1}{2})^{n-1}$   $f(w) = -\frac{2\pi}{\lambda - 2}$   $\chi(w) = -\frac{1}{\xi - 2}$ 
(7)  $(n < 0)$   $d_n = (\frac{1}{2})^{n-1}$   $f(w) = -\frac{2\pi}{\lambda - 2}$   $\chi(w) = -\frac{1}{\xi - 2}$ 
(8)  $(n < 0)$   $d_n = (\frac{1}{2})^{n-1}$   $f(w) = -\frac{0.5\pi}{\lambda - 2}$   $\chi(w) = -\frac{1}{\xi - 2}$ 
(9)  $(n < 0)$   $d_n = (\frac{1}{2})^{n-1}$   $f(w) = -\frac{0.5\pi}{\lambda - 2}$   $\chi(w) = -\frac{1}{\xi - 2}$ 

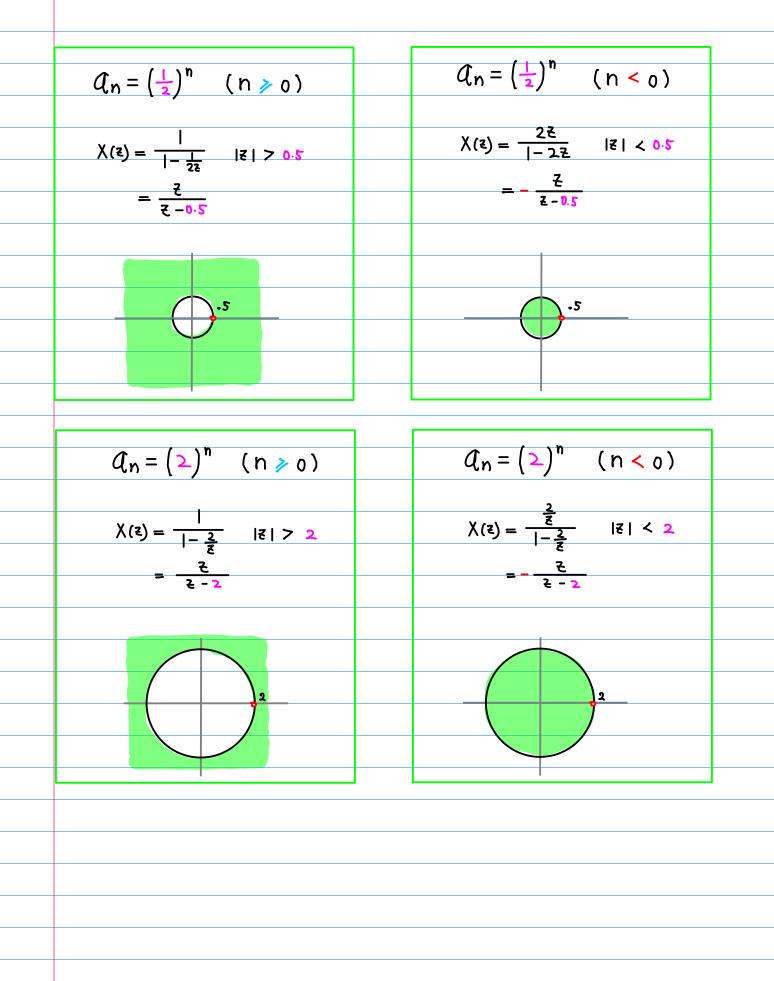


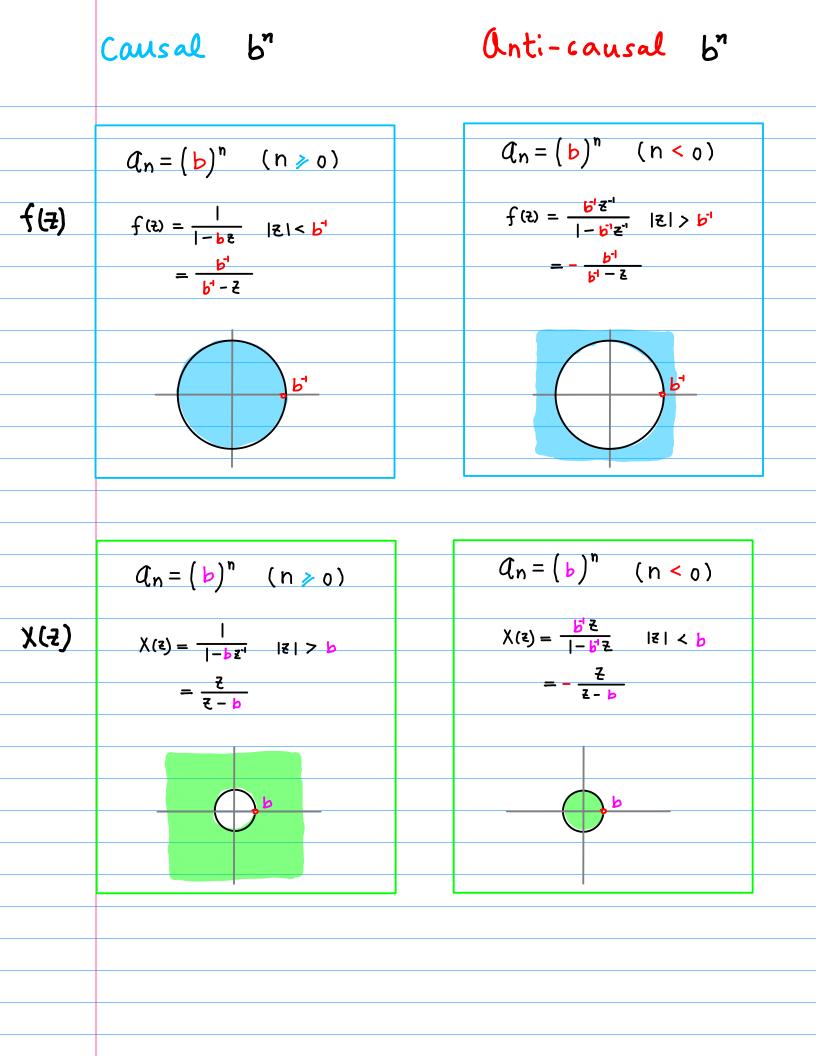
Causal  $(n \ge 0)$   $(\frac{1}{2})^n$ ,  $(2)^n$ 

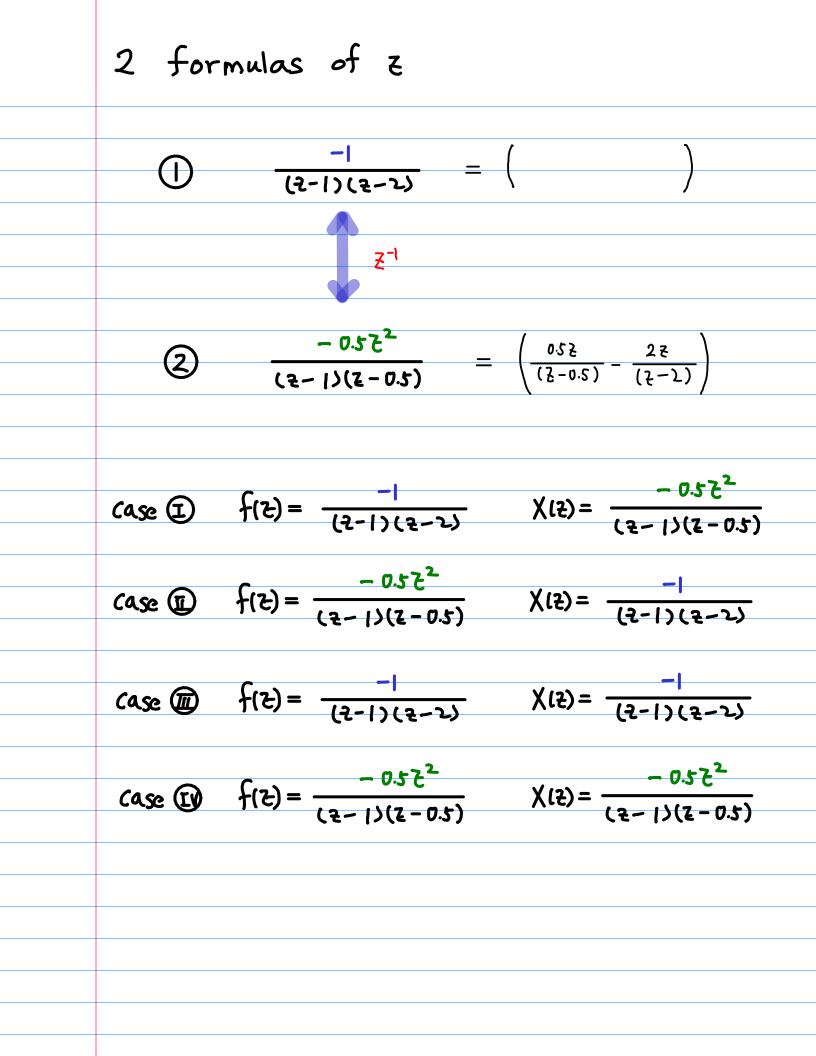



Anti-causal (n < 0)  $(\frac{1}{2})^n$ ,  $(2)^n$ 




Cousal flz)


Anti-causal flz)




Causal X(Z)

Anti-causal X(Z)







$$\frac{3}{2} \frac{-1}{(2-05)(2-2)} = \frac{3}{2} \frac{2}{3} \left( \frac{1}{2-0.5} - \frac{1}{2-2} \right)$$

$$\frac{3}{2} \frac{-1}{(2-05)(2-2)} = \frac{3}{2} \frac{2}{3} \left( \frac{1}{2-0.5} - \frac{1}{2-2} \right)$$

$$\frac{3}{2} \frac{-1}{(2^2-05)(2^2-2)} = \frac{3}{2} \frac{2}{3} \left( \frac{1}{2^2-0.5} - \frac{1}{2-2} \right)$$

$$= \left( \frac{2}{2^2-1} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{22}{2^2-1} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{22}{2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{-22}{2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{-22}{2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{-22}{2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{-2}{2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{-2}{2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{-2}{2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} - \frac{1}{2^2-2} \right)$$

$$= \left( \frac{1}{2^2-2} - \frac{1}{2^2-2$$

$$\frac{3}{2} \frac{-1}{(2-05)(2-2)} = \left(\frac{1}{2-2} - \frac{1}{2-2}\right)$$

$$(1) - (2) |z| < 0.5 \quad f(z) = -\frac{2}{1-2z} + \frac{\delta.5}{1-0.5z} - \frac{2^{n}}{1-2z^{n}} + (\frac{1}{2})^{n+1} \quad (n < 0)$$

$$|z| > 2 \quad f(z) = \frac{z^{1}}{1-0.5z^{n}} - \frac{z^{2}}{1-2z^{n}} + \frac{2^{n}}{1-0.5z} - (\frac{1}{2})^{n+1} - (\frac{1}{2})^{n+1} \quad (n < 0)$$

$$(1) - (2) |z| < 0.5 \quad \chi(z) = -\frac{2}{1-2z} + \frac{\delta.5}{1-0.5z^{n}} - (\frac{1}{2})^{n+1} - (\frac{1}{2})^{n+1} \quad (n < 0)$$

$$|z| > 2 \quad \chi(z) = -\frac{z^{n}}{1-2z} + \frac{\delta.5}{1-0.5z^{n}} - (\frac{1}{2})^{n+1} - \frac{2^{n}}{2^{n}} \quad (n < 0)$$

$$|z| > 2 \quad \chi(z) = -\frac{z^{n}}{1-2z} + \frac{\delta.5}{1-2z^{n}} - (\frac{1}{2})^{n+1} \quad (n > 0)$$

$$|z| > 2 \quad \chi(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

$$|z| > 2 \quad f(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

$$|z| > 2 \quad f(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

$$|z| > 2 \quad f(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

$$|z| > 2 \quad \chi(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

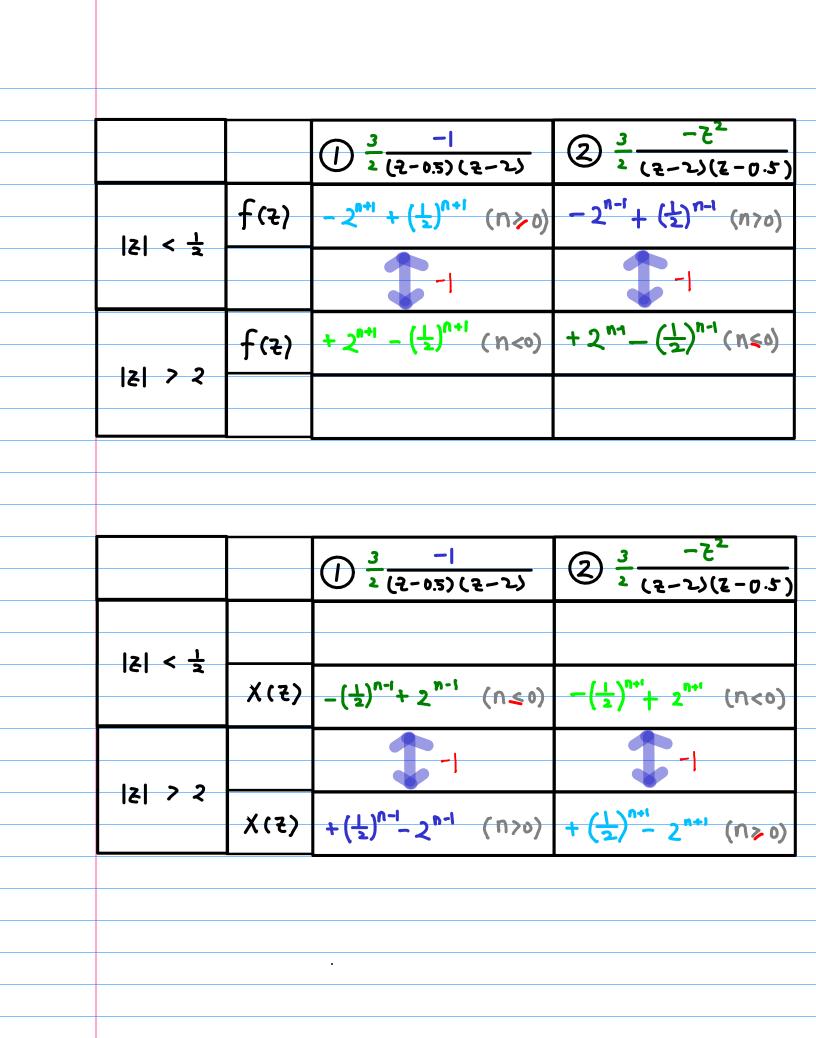
$$|z| > 2 \quad \chi(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

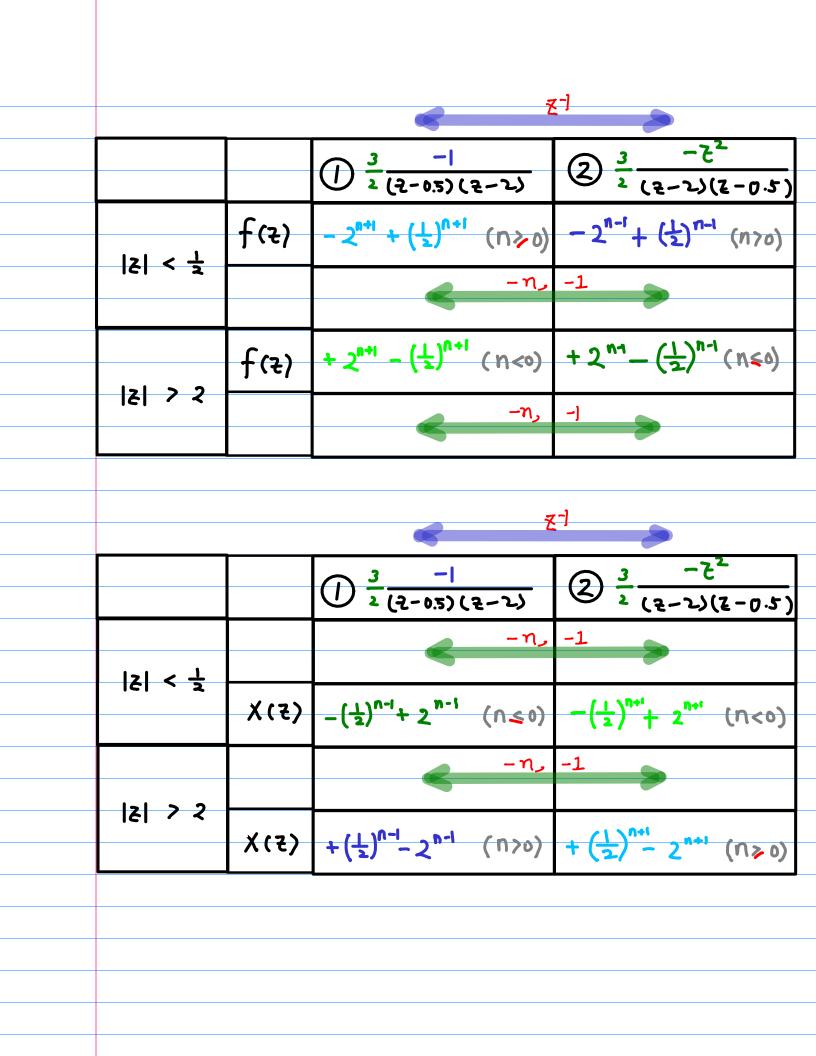
$$|z| > 2 \quad \chi(z) = -\frac{z}{1-2z} + \frac{z}{1-2z^{n}} \quad (n < 0)$$

$$|z| > 2 \quad \chi(z) = -\frac{z}{1-2z^{n}} - \frac{z}{1-2z^{n}} \quad (n < 0)$$

|       |     |                   |                                                        | 7                                                      |
|-------|-----|-------------------|--------------------------------------------------------|--------------------------------------------------------|
|       |     |                   | $\frac{1}{2} \frac{3}{(2-0.5)(2-2)}$                   | 2 3 -2-<br>2 (2-2)(2-0.5)                              |
| (A)   | 2   | < 1/2             | $-2^{n+1} + (\frac{1}{2})^{n+1} (n > 0)$               |                                                        |
| f(z)  | 121 | 72                | $+2^{n+1}-(\frac{1}{2})^{n+1}$ (n<0)                   | $+2^{n-1}-(\frac{1}{2})^{n-1}$ (n<0)                   |
| B     | 5   | < <u>1</u>        | $-\left(\frac{1}{2}\right)^{n-1}+2^{n-1}$ (n < 0)      | $-\left(\frac{1}{2}\right)^{n+i}+2^{n+i}$ (n<0)        |
| X(Z)  | 2   | 72                | +( <u>+</u> ) <sup>n-1</sup> - 2 <sup>n-1</sup> (n>o)  | $+ \left(\frac{1}{2}\right)^{n+1} - 2^{n+1} (n \ge 0)$ |
|       |     |                   |                                                        |                                                        |
|       |     |                   | $\frac{1}{2} \frac{\frac{-1}{2}}{(2-0.5)(2-2)}$        | 2 3 -22                                                |
| 121 6 | ㅗ   | f( <del>2</del> ) | $-2^{n+1} + (\frac{1}{2})^{n+1} (n > 0)$               |                                                        |
| 2  <  | ת   | X(Z)              | $-(\frac{1}{2})^{n-1}+2^{n-1}$ (n < 0)                 | $-\left(\frac{1}{2}\right)^{n+i}+2^{n+i}$ (n<0)        |
|       | 2   | f(2)              | + 2 <sup>n+1</sup> - (⊥) <sup>n+1</sup> (n<0)          | $+2^{n_1}-(\frac{1}{2})^{n_1}(n_{\leq 0})$             |
| 2  >  | <   | X(Z)              | +( <u>+</u> ) <sup>n-1</sup> - 2 <sup>n-1</sup> (1)>0) | $+ \left(\frac{1}{2}\right)^{n+1} - 2^{n+1} (n \ge 0)$ |
|       |     |                   |                                                        |                                                        |
|       |     |                   |                                                        |                                                        |

|        |                  | $(1) \frac{3}{3} \frac{-1}{-1}$                                        | $2\frac{3}{2}\frac{-2^{2}}{(2-2)(2-0.5)}$ |
|--------|------------------|------------------------------------------------------------------------|-------------------------------------------|
| 공  < 土 | f(z)             | causal (N>0)                                                           | causal (n70)                              |
| 2  > 2 | <del>f</del> (२) | articansal (n <o)< th=""><th>anticansal (n<o)< th=""></o)<></th></o)<> | anticansal (n <o)< th=""></o)<>           |
| 2  < 닃 | X(Z)             | Anticansal (n.s.o)                                                     | Anticansal (n <o)< th=""></o)<>           |
| 2  > 2 | X(Z)             | Causal (170)                                                           | causal (NZO)                              |


|        |       | $\frac{1}{2} \frac{2}{(2-0.5)(2-2)}$                     | $2\frac{3}{2}\frac{-2^2}{(2-2)(2-0.5)}$ |
|--------|-------|----------------------------------------------------------|-----------------------------------------|
| 공  < 닃 | f(z)  | causal (N>0)                                             | causal (n70)                            |
| 2  < 닃 | X(Z)  | Anticansal (n.s.o)                                       | Anticansal (n <o)< th=""></o)<>         |
| 2  > 2 | f (z) | anticansal (n <o)< th=""><th>anticansal (NEO)</th></o)<> | anticansal (NEO)                        |
| 2  > 2 | X(Z)  | Causal (N>0)                                             | causal (N>0)                            |

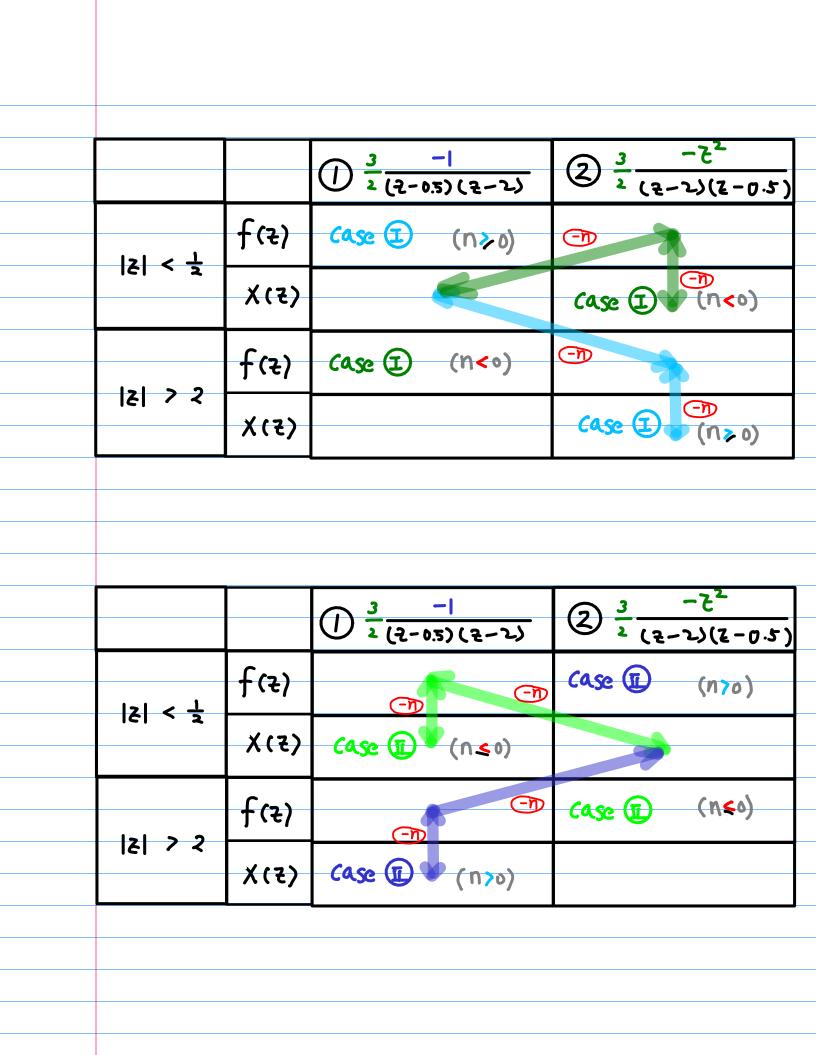

 $-\left(\frac{0.5\xi}{(\xi-0.5)}-\frac{2\xi}{(\xi-\Sigma)}\right)$  $\left(\frac{1}{\xi-0.5}-\frac{1}{\xi-2}\right)$  $-\frac{2}{1-2\xi}+\frac{0.5}{1-0.5\xi}$  $-\frac{z}{|-2z|}+\frac{z}{|-0.5z|}$ |21<0.5 |25/<1 |0.58]<1 |2|<0.5 |22|<| |0.52|<|  $\frac{z^{-1}}{|-0.5z^{-1}|-2z^{-1}}$ 0.5 | - 0.5 E<sup>-1</sup> - 2 E<sup>-1</sup> |そ| 72 |052')<| \22')<| |ミ| 72 |0.5z<sup>-1</sup>|<| \22<sup>-1</sup>)<|

 $\frac{\left(\frac{0.5\xi}{(\xi-0.5)}-\frac{2\xi}{(\xi-1)}\right)}{\left(\xi-1\right)}$  $\left(\frac{1}{\xi-0.5}-\frac{1}{\xi-2}\right)$  $-\frac{2}{1-2\xi}+\frac{\xi}{1-0.5\xi}$  $-\frac{2}{1-2\xi}+\frac{0.5}{1-0.5\xi}$ 121<0.5 f(z) causal (n>0) 121<0.5 f(2) causal (n>0) X(Z) anticausal (n≤0) X(Z) anticausal (n<0)  $\frac{z^{-1}}{|-0.5z^{-1}|} = \frac{z^{-1}}{|-2z^{-1}|}$  $\frac{0.5}{|-0.5\epsilon^{-1}} = \frac{2}{|-2\epsilon^{-1}}$ ZI72 f(Z) anticausal (n<0) 12172 f(z) anticausal (n≤0) X(Z) causal (n>0) X(Z) causal (n>0)

| <b>a</b> 3 <b>-1 z</b> <sup>-1</sup>                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{2} \frac{3}{2(2-0.5)(2-2)} $                                                                                                                                                                                           | $2\frac{3}{2}\frac{-2^{2}}{(2-2)(2-0.5)}$                                                                                                                                                            |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| 121<0.5                                                                                                                                                                                                                          | 2  < 0.5                                                                                                                                                                                             |
| <br>$-\frac{2}{1-2\xi}+\frac{0.5}{1-0.5\xi}$                                                                                                                                                                                     | $-\frac{z}{1-2z}+\frac{z}{1-0.5z}$                                                                                                                                                                   |
| <br>1-22 1-0.52                                                                                                                                                                                                                  | - 28   -0.5 ह                                                                                                                                                                                        |
| <br>$f(z) = -[2 + 2^{3}z^{1} + 2^{3}z^{2} + \cdots] - 2^{m}$                                                                                                                                                                     | $f(z) = -\left[2^{0}z' + 2^{1}z^{2} + 2^{2}z^{3} + \cdots\right] - 2^{n}$                                                                                                                            |
| $+ \left[ \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^{2} \xi' + \left(\frac{1}{2}\right)^{3} \xi^{2} + \cdots \right] + \left(\frac{1}{2}\right)^{n+1}$                                                                 | $+\left[\left(\frac{1}{2}\right)^{0}\overline{z}^{1}+\left(\frac{1}{2}\right)^{1}\overline{z}^{2}+\left(\frac{1}{2}\right)^{2}\overline{z}^{3}+\cdots\right]+\left(\frac{1}{2}\right)^{n-1}$         |
| $X (\underline{7}) = -\left[\left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{2}\right)^{-2} \underline{z}^{1} + \left(\frac{1}{2}\right)^{-3} \underline{z}^{2} + \cdots\right] - \left(\frac{1}{2}\right)^{n-1}$                  | $X (\xi) = -\left[ \left(\frac{1}{2}\right)^0 \xi^1 + \left(\frac{1}{2}\right)^1 \xi^2 + \left(\frac{1}{2}\right)^2 \xi^3 + \cdots \right] - \left(\frac{1}{2}\right)^{\eta + 1}$                    |
| <br>+ $\left[2^{-1} + 2^{-2} z^{1} + 2^{-3} z^{5} + \cdots \right] + 2^{n-1}$                                                                                                                                                    | $+ \left[ 2^{\circ} \overline{z}' + 2^{1} \overline{z}^{2} + 2^{2} \overline{z}^{3} + \cdots \right] + 2^{n+1}$                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| 18172                                                                                                                                                                                                                            | 13172                                                                                                                                                                                                |
| <br>$\frac{z^{-1}}{ -0.5z^{-1} -2z^{-1}}$                                                                                                                                                                                        | $\frac{0.5}{ -0.5z^{-1} } = \frac{2}{ -2z^{-1} }$                                                                                                                                                    |
| <br>  - 0.52   - 22                                                                                                                                                                                                              | - 0.5 ē <sup>-1</sup>   - 2 ē <sup>-1</sup>                                                                                                                                                          |
| $f(z) = + [2^{\circ}z' + 2^{-1}z^{-2} + 2^{-2}z^{-3} + \cdots ] + 2^{n+1}$                                                                                                                                                       | $f(z) = + \left[ 2^{4} z^{6} + 2^{-5} z^{-1} + 2^{-5} z^{-5} + \cdots \right] + 2^{n-1}$                                                                                                             |
| <br>$-\left[\left(\frac{1}{2}\right)^{0}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]-\left(\frac{1}{2}\right)^{n+1}$                            | $-\left[\left(\frac{1}{2}\right)^{n}\overline{\xi}^{0}+\left(\frac{1}{2}\right)^{n}\overline{\xi}^{-1}+\left(\frac{1}{2}\right)^{n}\overline{\xi}^{-1}+\cdots\right]-\left(\frac{1}{2}\right)^{n-1}$ |
| <br>$X (Z) = + \left[ \left( \frac{1}{2} \right)^{n} \overline{z}^{1} + \left( \frac{1}{2} \right)^{n} \overline{z}^{-2} + \left( \frac{1}{2} \right)^{n} \overline{z}^{-3} + \cdots \right] + \left( \frac{1}{2} \right)^{n-1}$ | $X (3) = + \left[ \left( \frac{1}{2} \right)^{3} 5^{-1} + \left( \frac{1}{2} \right)^{3} 5^{-1} + \left( \frac{1}{2} \right)^{3} 5^{-1} + \cdots \right] + \left( \frac{1}{2} \right)^{3+1}$         |
| $-\left[2^{\circ} \overline{z}^{1} + 2^{\circ} \overline{z}^{-2} + 2^{\bullet} \overline{z}^{-3} + \cdots\right] - 2^{n-1}$                                                                                                      | $-\left[2^{1}\overline{z}^{0}+2^{3}\overline{z}^{-1}+2^{3}\overline{z}^{-2}+\cdots\right] -2^{n+1}$                                                                                                  |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |

\_\_\_\_\_






|                   |              | $\frac{1}{2} \frac{3}{(2-0.5)(2-2)}$            | $2\frac{3}{2}\frac{-2^{2}}{(2-2)(2-0.5)}$                                                                            |
|-------------------|--------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 공  < 닃            |              | $-2^{n+1} + (\frac{1}{2})^{n+1} (n > 0)$        |                                                                                                                      |
|                   | X(Z)         | $-(\frac{1}{2})^{n-1}+2^{n-1}$ (n < 0)          |                                                                                                                      |
|                   | f(z)         | $+2^{n+1}-(\frac{1}{2})^{n+1}$ (n<0)            |                                                                                                                      |
| 2  7 2            | X(Z)         | $+ (\frac{1}{2})^{n-1} - 2^{n-1} (n>0)$         |                                                                                                                      |
|                   |              |                                                 |                                                                                                                      |
|                   |              |                                                 |                                                                                                                      |
|                   | 1            |                                                 | -72                                                                                                                  |
|                   |              | $\frac{1}{2} \frac{\frac{-1}{2}}{(2-0.5)(2-2)}$ | $2\frac{3}{2}\frac{-z^{2}}{(z-2)(z-0.5)}$                                                                            |
|                   | f(z)         | $\frac{1}{2} \frac{3}{2(2-0.5)(2-2)}$           | $2 \frac{3}{2} \frac{-z^2}{(z-2)(z-0.5)} - 2^{n-1} + (\frac{1}{2})^{n-1} (n70)$                                      |
| ट  < <del>1</del> | f(z)<br>X(z) |                                                 |                                                                                                                      |
|                   |              |                                                 | $-2^{n-1}+(\frac{1}{2})^{n-1}$ (170)                                                                                 |
| < 1 / 1           | X(Z)         |                                                 | $-2^{n-1} + (\frac{1}{2})^{n-1} (n70)$<br>$-(\frac{1}{2})^{n+1} + 2^{n+1} (n<0)$                                     |
|                   | X(२)<br>f(२) |                                                 | $-2^{n-1} + (\frac{1}{2})^{n-1} (n70)$ $-(\frac{1}{2})^{n+1} + 2^{n+1} (n<0)$ $+2^{n-1} - (\frac{1}{2})^{n-1} (n<0)$ |
|                   | X(२)<br>f(२) |                                                 | $-2^{n-1} + (\frac{1}{2})^{n-1} (n70)$ $-(\frac{1}{2})^{n+1} + 2^{n+1} (n<0)$ $+2^{n-1} - (\frac{1}{2})^{n-1} (n<0)$ |

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_



 $\frac{1}{2} \frac{3}{2} \frac{-1}{(2-0.5)(2-2)} 2 \frac{3}{2} \frac{-2^{-2}}{(2-2)(2-0.5)}$  $|z| < \frac{1}{2} \qquad f(z) \qquad case fine \qquad case$  
 f(२)
 (معن)

 ١٤١ > २
 × (२)

 × (२)
 × (२)
 Case IV - Case (IV)  $(A_{\infty} I) f(z) = \frac{3}{2} \frac{-1}{(2-05)(2-2)} \qquad X(z) = \frac{3}{2} \frac{-2^2}{(2-2)(2-0.5)}$  $(a_{Se} \prod f(z) = \frac{3}{2} \frac{-z^2}{(z-2)(z-0.5)} \qquad \chi(z) = \frac{3}{2} \frac{-1}{(z-0.5)(z-2)}$  $(a_{Se} ) = \frac{3}{2} \frac{-1}{(2-0.5)(2-2)} \qquad \chi(2) = \frac{3}{2} \frac{-1}{(2-0.5)(2-2)}$ Case (1)  $f(z) = \frac{3}{2} \frac{-z^2}{(z-2)(z-0.5)}$   $\chi(z) = \frac{3}{2} \frac{-z^2}{(z-2)(z-0.5)}$ 

|                           |              | $\frac{1}{2} \frac{3}{2(2-0.5)(2-2)}$         | $2\frac{3}{2}\frac{-2^{2}}{(2-2)(2-0.5)}$              |
|---------------------------|--------------|-----------------------------------------------|--------------------------------------------------------|
| <b>ट</b>   < <u>न</u> ्ने | f(z)         | Case m                                        |                                                        |
|                           | X(Z)         | دمي آ                                         |                                                        |
|                           | f(z)         | (4.5e 🔟                                       |                                                        |
| 2  > 2                    | X(Z)         | دم <u>جو ش</u>                                |                                                        |
|                           |              |                                               |                                                        |
|                           |              |                                               |                                                        |
|                           |              |                                               |                                                        |
|                           |              | $   (1) \frac{3}{2} \frac{-1}{(2-0.5)(2-2)} $ | $2\frac{3}{2}\frac{-2^{2}}{(2-2)(2-0.5)}$              |
| <br> 2  < ⊥               | f(2)         | -D<br>-D<br>-D<br>-D                          | 2) $\frac{3}{2} \frac{-2^2}{(2-2)(2-0.5)}$<br>Case (1) |
| ट  < <u>न</u> ्न          | f(z)<br>X(z) |                                               |                                                        |
|                           |              |                                               | Case (1)                                               |
| < 1 / 1                   | X(Z)         |                                               | Case (1)<br>Case (1)                                   |
|                           | X(२)<br>f(२) |                                               | (ase (1)<br>(ase (1)<br>(ase (1)                       |
|                           | X(२)<br>f(२) |                                               | (ase (1)<br>(ase (1)<br>(ase (1)                       |

$$\begin{aligned}
\left| \frac{1}{2!} \left( \frac{1}{2} \right) | \frac{1}{2!} | \frac{1}{2!} < 0.5 \\ \text{ant i causal} \\ consele \\
\frac{3}{2!} \frac{-1}{(\frac{1}{2!} - 0.5)(\frac{1}{2!} - 2)} = \left( \frac{1}{\frac{1}{2!} - 0.5} - \frac{1}{\frac{1}{2!} - 2} \right) \\
| \frac{1}{2!} < 0.5 \\ \times (\frac{1}{2!}) = -\frac{2}{1 - 2\frac{1}{2!}} + \frac{65}{1 - 0.5\frac{1}{2!}} - \frac{(\frac{1}{2!})^{14!} + 2^{11!}}{1 - 0.5\frac{1}{2!}} (n \le 0) \\
& -\left(\frac{1}{2!} \frac{1}{2!} + \frac{1}{2!} \frac{1}{2!} \frac{1}{2!} + \frac{1}{2!} \frac{1}{2!} \frac{1}{2!} \frac{1}{2!} + \frac{1}{2!} \frac{1}{2!} \frac{1}{2!} \frac{1}{2!} + \frac{1}{2!} \frac{$$

$$\frac{3}{2} \frac{-1}{(2-0S)(2-2)} = \left(\frac{1}{2-0.5} - \frac{1}{2-2}\right)$$

$$|z| < 0.5 \quad f(z) \qquad a_n = \frac{-(4)^{n+} + 2^{n+1}}{(4)^{n+} - 2^{n+1}} \quad (n < 0)$$

$$|z| > 2 \quad f(z) \qquad b_n = \frac{-(4)^{n+} + 2^{n+1}}{(4)^{n+} - 2^{n+1}} \quad (n > 0)$$

$$f(z| < 0.5) \quad f(z| > 2) = \phi \qquad a_n + b_n = 0$$

$$a_n = -b_n$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} a^{n+} z^n \qquad a^{n+} \qquad n > 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} a^{n+} z^n \qquad a^{n+} \qquad n > 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} a^{n+} z^n \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} a^{n+} z^n \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{k+} z^{k+} \qquad a^{n+} \qquad n < 0 \quad n < 0 \quad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{n+} z^{n+} \qquad a^{n+} \qquad n < 0 \quad n < 0$$

$$|z| < 0 \quad f(z) = \sum_{k=0}^{\infty} (\frac{1}{4})^{n+} z^{n+} \qquad a^{n+} \qquad a^{$$

$$\frac{3}{2} \frac{-1}{(2 - 0.5)(2 - 2.5)} = \left(\frac{1}{2 - 0.5} - \frac{1}{2 - 2.5}\right)$$

$$|\xi| < 0.5 \quad f(z) = -\frac{2}{1 - 2z} + \frac{6.5}{1 - 6.5z} - \frac{-2^{zn}}{-2^{zn}} + (\frac{1}{2})^{n+1} \quad (n \ge 0)$$

$$-\left(\frac{2x + 2z^{2} + 2^{2z} + \dots + (\frac{1}{2})^{n+1} + \frac{6.5}{1 - 6.5z} - \frac{-(\frac{1}{2})^{n+1} + 2^{n+1}}{n^{2}}\right)$$

$$|\xi| < 0.5 \quad \chi(z) = -\frac{2}{1 - 2z} + \frac{6.5}{1 - 6.5z} - \frac{-(\frac{1}{2})^{n+1} + 2^{n+1}}{(\frac{1}{2})^{n+1} + 2^{n+1}} \quad (n \le 0)$$

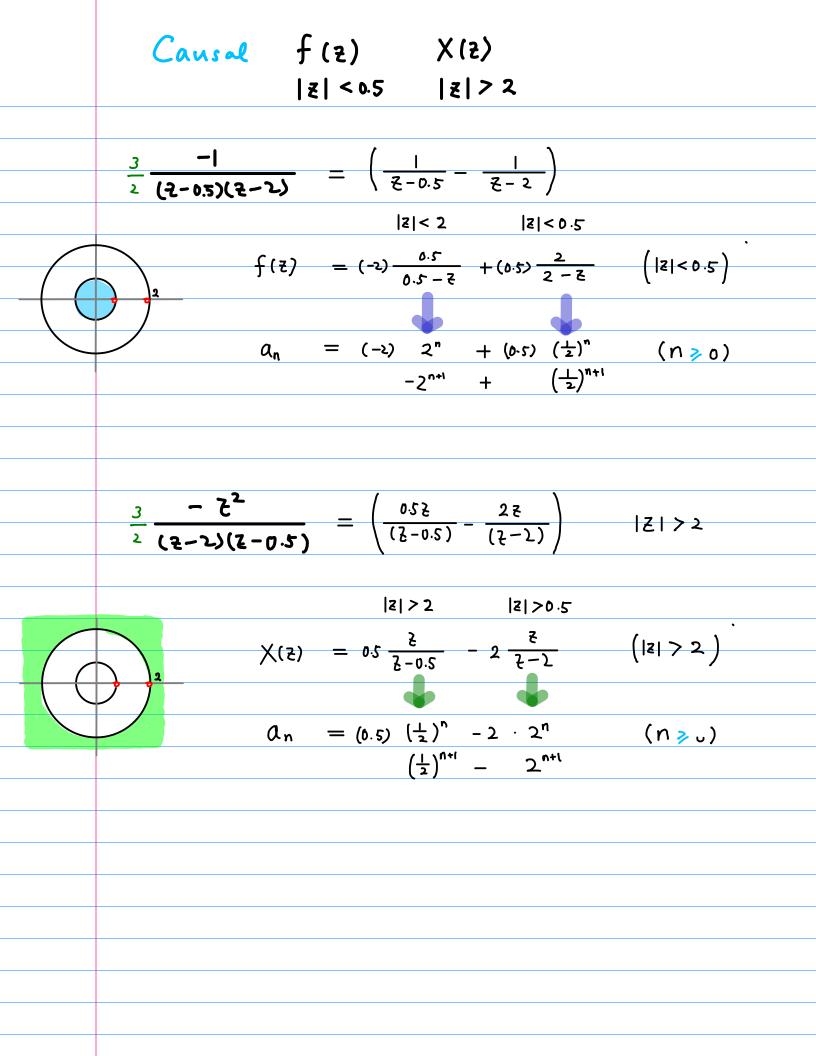
$$-\left(\frac{1}{2}z^{n} + 2^{2z} + 2^{2z} + \dots + (\frac{1}{2})^{2z} + (\frac{1}{2})^{2z} + (\frac{1}{2})^{2z} + \frac{1}{2} + 2^{2z} + 2^{2z} + \dots + (\frac{1}{2})^{n+1} + 2^{n+1}}{n^{2}} \quad (n \le 0)$$

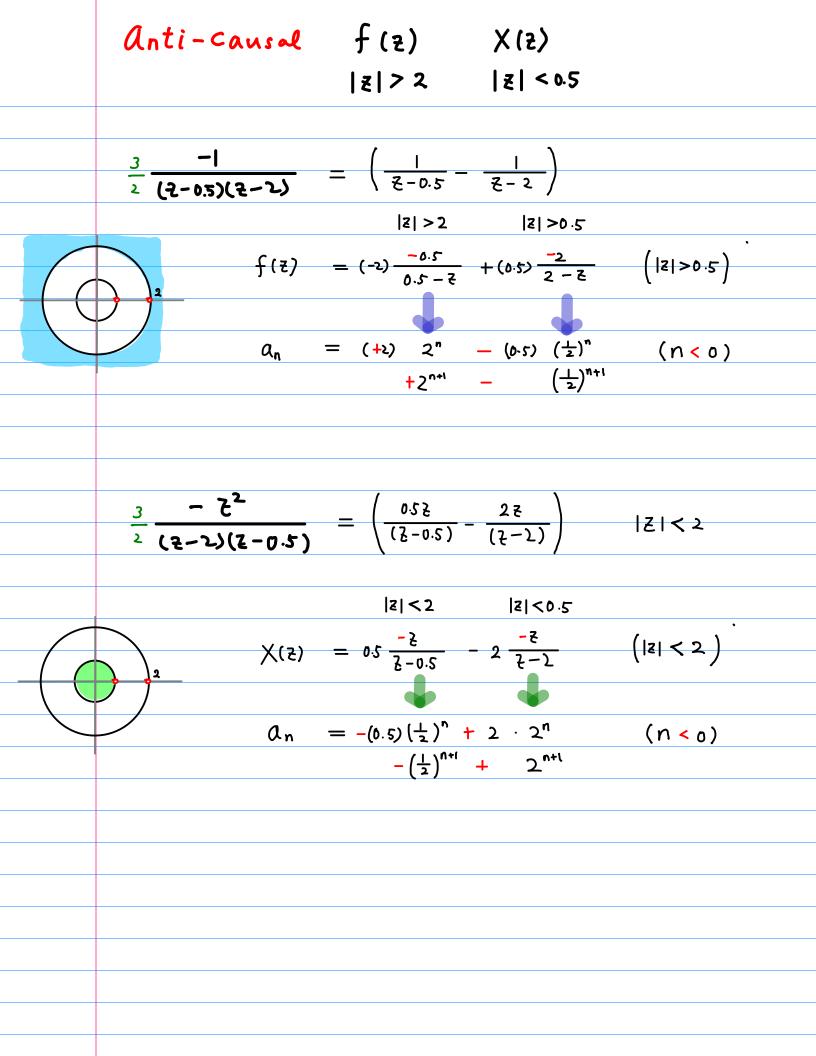
$$-\left(\frac{1}{2}z^{n} + 2^{2z} + 2^{2z} + 2^{2z} + \dots + (\frac{1}{2})^{2z} + (\frac{1}{$$

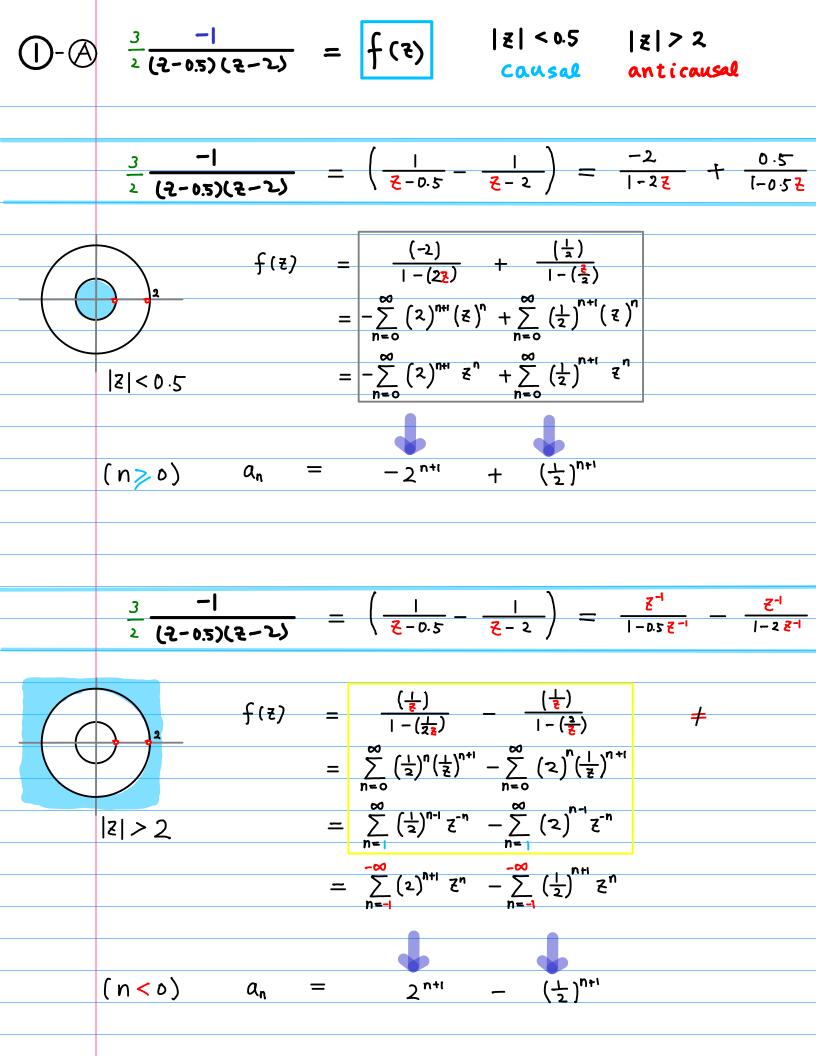
\_\_\_\_\_

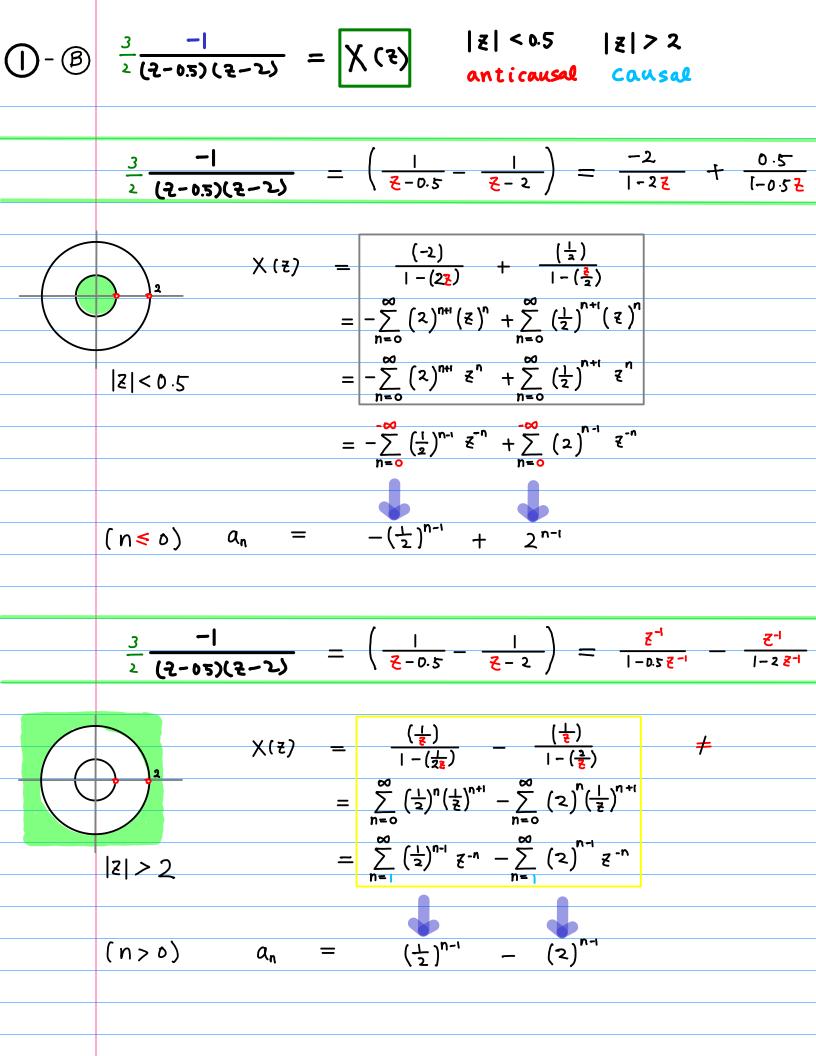
\_\_\_\_\_

\_\_\_\_\_


\_\_\_\_\_

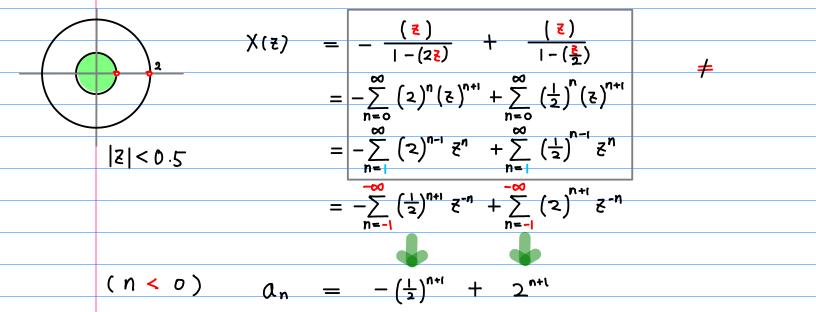

$$ROC \quad f(z) = \sum_{n=0}^{\infty} a^{nn} z^n \qquad a^{nn} \qquad n \ge 0 \quad n \le 0 \quad n \le 0 \quad n \le 0$$


$$z^{-1} \quad z^{-1} \qquad \sum_{n=0}^{\infty} (\frac{1}{2})^{n-1} z^n \qquad -n$$

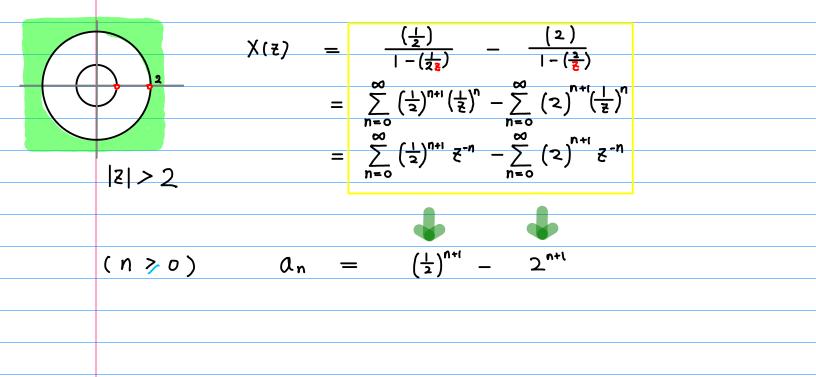

$$ROC \quad \chi(z) = \sum_{k=0}^{\infty} (a)^{k-1} z^{-k} \qquad (\frac{1}{2})^{-nn} \qquad n \le 0 \quad n \ge 0 \quad n \ge 0 \quad n \ge 0$$

$$= a^{n-1}$$








$$\widehat{\mathbb{Z}} - \widehat{\mathbb{A}} \quad \frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \widehat{\prod}(2) |z| < 25 \quad |z| > 2 \\ conside \quad ant (conside \\ \frac{3}{2} - \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{\delta \xi}{(\xi-0.5)} - \frac{2\xi}{(\xi-1)}\right) = -\frac{\xi}{1-2\xi} + \frac{\xi}{1-0.5\xi} \\ \frac{3}{2} - \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{\delta \xi}{(\xi-0.5)} - \frac{2\xi}{(\xi-1)}\right) = -\frac{\xi}{1-2\xi} + \frac{\xi}{1-0.5\xi} \\ = -\frac{\xi}{0}(2)^{n}(\xi)^{n+} + \frac{\xi}{0}(\frac{1}{2})^{n}(\xi)^{n+} \\ = -\frac{\xi}{0}(2)^{n}(\xi)^{n+} + \frac{\xi}{0}(\frac{1}{2})^{n}(\xi)^{n+} \\ \frac{3}{2} - \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{\delta \xi}{(\xi-0.5)} - \frac{2\xi}{(\xi-1)}\right) = \frac{\delta \xi}{1-\delta \xi^{n}} - \frac{2}{1-2\xi^{n}} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} \\ \frac{3}{2} - \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{\delta \xi}{(\frac{1}{2}-0.5)} - \frac{2\xi}{(\xi-1)}\right) = \frac{\delta \xi}{1-\delta \xi^{n}} - \frac{2}{1-2\xi^{n}} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}\right)^{n-1} + \left(\frac{1}{2}\right)^{n-1} \\ \widehat{\mathbb{A}} + \left(\frac{1}{2}$$

$$(2) - (B) = \frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = [X(2)] = |z| < 0.5 |z| > 2$$
  
anticausal causal  
$$\frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{0.5}{(2-0.5)} - \frac{2z}{(2-2)}\right) = -\frac{z}{1-2z} + \frac{z}{1-0.5z}$$



$$\frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-2)}\right) = \frac{0.5}{1-0.52^{-1}} - \frac{2}{1-22^{-1}}$$

