
Young Won Lim
12/11/17

IO Monad (3C)



Young Won Lim
12/11/17

 Copyright (c)  2016  - 2017 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any later 
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the license is 
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com


IO Monad (3C) 3 Young Won Lim
12/11/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps



IO Monad (3C) 4 Young Won Lim
12/11/17

getLine :: IO String

putStrLn :: String -> IO ()  -- note that the result value is an empty tuple.

randomRIO :: (Random a) => (a,a) -> IO a

Normally Haskell evaluation doesn't cause this execution to occur. 

A value of type (IO a) is almost completely inert. 

the only IO action is to run in main

main :: IO ()

main = putStrLn "Hello, World!"

main = putStrLn "Hello" >> putStrLn "World"

main = putStrLn "Hello, what is your name?"

      >> getLine

      >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

https://wiki.haskell.org/Introduction_to_IO

IO ( ) 



IO Monad (3C) 5 Young Won Lim
12/11/17

(>>) :: IO a -> IO b -> IO b

where if x and y are IO actions, then (x >> y) is the action that 
performs x, dropping the result, then performs y and returns its 
result.

(>>=) :: IO a -> (a -> IO b) -> IO b

to use the result of the first in order to affect what the second 
action will do

Now, x >>= f is the action that first performs the action x, and 
captures its result, passing it to f, which then computes a second 
action to be performed. That action is then carried out, and its 
result is the result of the overall computation. 

x >> y = x >>= const y

https://wiki.haskell.org/Introduction_to_IO

IO ( ) 



IO Monad (3C) 6 Young Won Lim
12/11/17

main = putStrLn "Hello, what is your name?"

      >> getLine

      >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

main = do putStrLn "Hello, what is your name?"

          name <- getLine

          putStrLn ("Hello, " ++ name ++ "!")

return :: a -> IO a

Note that there is no function:

unsafe :: IO a -> a

https://wiki.haskell.org/Introduction_to_IO

IO ( ) 



IO Monad (3C) 7 Young Won Lim
12/11/17

getChar                 ::   IO Char

putChar                 ::    Char -> IO ()

main                    :: IO ()

main                    =  do c <- getChar

                              putChar c

ready                   :: IO Bool

ready                   =  do c <- getChar

                              c == 'y'  -- Bad!!!

https://www.haskell.org/tutorial/io.html

Basic IO 



IO Monad (3C) 8 Young Won Lim
12/11/17

return                  ::   a -> IO a

getLine     :: IO String

getLine     =  do c <- getChar

                  if c == '\n'

                       then return ""

                       else do l <- getLine

                               return (c:l)

https://www.haskell.org/tutorial/io.html

Basic IO 



IO Monad (3C) 9 Young Won Lim
12/11/17

 f    ::  Int -> Int -> Int

absolutely cannot do any I/O since IO does not appear in the 
returned type. 

Basically, it is not intended to place print statements liberally 
throughout their code during debugging in Haskell.

There are some unsafe functions available to get around this 
problem but these are not recommended.

Debugging packages (like Trace) often make liberal use of these 
‘forbidden functions' in an entirely safe manner. 

https://www.haskell.org/tutorial/io.html

Basic IO 



IO Monad (3C) 10 Young Won Lim
12/11/17

todoList :: [IO ()]

todoList = [putChar 'a',

            do putChar 'b'

               putChar 'c',

            do c <- getChar

               putChar c]

sequence_        :: [IO ()] -> IO ()

sequence_ []     =  return ()

sequence_ (a:as) =  do a

                       sequence as

do x;y 

x >> y

https://www.haskell.org/tutorial/io.html

Actions



IO Monad (3C) 11 Young Won Lim
12/11/17

sequence_        :: [IO ()] -> IO ()

sequence_        =  foldr (>>) (return ())

putStr                  :: String -> IO ()

putStr s                =  sequence_ (map putChar s)

https://www.haskell.org/tutorial/io.html

Actions



IO Monad (3C) 12 Young Won Lim
12/11/17

Errors are encoded using a special data type, IOError. 

This type represents all possible exceptions that may occur within 
the I/O monad. 

This is an abstract type: no constructors for IOError are available 
to the user. 

isEOFError       :: IOError -> Bool

https://www.haskell.org/tutorial/io.html

Exception Handling 



IO Monad (3C) 13 Young Won Lim
12/11/17

An exception handler has type IOError -> IO a.

The catch function associates an exception handler with an 
action or set of actions

The arguments to catch are an action and a handler. 

catch                     :: IO a -> (IOError -> IO a) -> IO a

If the action succeeds, 

its result is returned without invoking the handler. 

If an error occurs, it is passed to the handler as a value of type 
IOError and the action associated with the handler is then 
invoked

https://www.haskell.org/tutorial/io.html

Exception Handling 



IO Monad (3C) 14 Young Won Lim
12/11/17

catch                     :: IO a -> (IOError -> IO a) -> IO a

getChar'                :: IO Char

getChar'                =  getChar `catch` (\e -> return '\n')

getChar'                :: IO Char

getChar'                =  getChar `catch` eofHandler where

    eofHandler e = if isEofError e then return '\n' else ioError e

isEOFError       :: IOError -> Bool

ioError                 :: IOError -> IO a

https://www.haskell.org/tutorial/io.html

Exception Handling 



IO Monad (3C) 15 Young Won Lim
12/11/17

getLine'        :: IO String

getLine'        = catch getLine'' (\err -> return ("Error: " ++ show 
err))

        where

                   getLine'' = do c <- getChar'

                         if c == '\n' then return ""

                                            else do l <- getLine'

                                                    return (c:l)

https://www.haskell.org/tutorial/io.html

Exception Handling 



IO Monad (3C) 16 Young Won Lim
12/11/17

type FilePath         =  String  -- path names in the file system

openFile              :: FilePath -> IOMode -> IO Handle

hClose                :: Handle -> IO () 

data IOMode           =  ReadMode | WriteMode 

| AppendMode | ReadWriteMode

Opening a file creates a handle (of type Handle) for use in I/O 
transactions. Closing the handle closes the associated file:

 

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles



IO Monad (3C) 17 Young Won Lim
12/11/17

Handles can also be associated with channels: 

communication ports not directly attached to files. 

Predefined channel handles :stdin, stdout, and stderr

Character level I/O operations include hGetChar and hPutChar, 
which take a handle as an argument. 

The getChar function used previously can be defined as:

 getChar                = hGetChar stdin

Haskell also allows the entire contents of a file or channel to be 
returned as a single string:

getContents            :: Handle -> IO String

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles



IO Monad (3C) 18 Young Won Lim
12/11/17

main = do fromHandle <- getAndOpenFile "Copy from: " 
ReadMode

          toHandle   <- getAndOpenFile "Copy to: " WriteMode 

          contents   <- hGetContents fromHandle

          hPutStr toHandle contents

          hClose toHandle

          putStr "Done."

getAndOpenFile          :: String -> IOMode -> IO Handle

getAndOpenFile prompt mode =

    do putStr prompt

       name <- getLine

       catch (openFile name mode)

             (\_ -> do putStrLn ("Cannot open "++ name ++ "\n")

                       getAndOpenFile prompt mode)

         

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles



IO Monad (3C) 19 Young Won Lim
12/11/17

getLine         = do c <- getChar

                     if c == '\n'

                          then return ""

                          else do l <- getLine

                                  return (c:l)

function getLine() {

  c := getChar();

  if c == `\n` then return ""

               else {l := getLine();

                     return c:l}}

https://www.haskell.org/tutorial/io.html

Functional vs Imperative Programming 



IO Monad (3C) 20 Young Won Lim
12/11/17



IO Monad (3C) 21 Young Won Lim
12/11/17

put :: s -> State s ( )

put :: s -> (State s) ( )

one value input type s

the effect-monad State s

the value output type ( ) 

the operation is used only for its effect; 

the value delivered is uninteresting

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

IO ( ) 



IO Monad (3C) 22 Young Won Lim
12/11/17

class Monad m where

    return :: a -> m a

    (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell


IO Monad (3C) 23 Young Won Lim
12/11/17

 Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

where the return type is a type application: 

the function tells you which effects are possible 

and the argument tells you what sort of value 

is produced by the operation

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

IO ( ) 



IO Monad (3C) 24 Young Won Lim
12/11/17

Generally, a monad cannot perform side effects in Haskell.

there is one exception: IO monad

Suppose there is a type called World, 

which contains all the state of the external universe

A way of thinking what IO monad does

    type    IO t    =    World    ->    (t, World) type synonym

IO t is a function 

input : a World

output: the t it’s supposed to contain, 

a new, updated World obtained 

by modifying the given World

in the process of computing the t. 

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

World (t, World)

World -> (t, World)

IO tWorld (t, World)

    IO x  world0    (x, world1) 



IO Monad (3C) 25 Young Won Lim
12/11/17

instance Monad IO where

    return x world = (x, world)

    (ioX >>= f) world0  =

    let

        (x, world1) = ioX world0

    in

        f x world1  -- Has type (t, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

ioXWorld (t, World)
f

World
(t, World)

    f x  world1 

  world0  (x, world1) 

t

x

world1



IO Monad (3C) 26 Young Won Lim
12/11/17

The return function takes x 

and gives back a function 

that takes a World 

and returns x along with the “new, updated” World

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

    return x world = (x, world)

returnx

World  (x, World) 



IO Monad (3C) 27 Young Won Lim
12/11/17

the expression (ioX >>= f) has type World -> (t, World)

a function that takes a World, called world0,

which is used to extract x from its IO monad. 

This gets passed to f, resulting in another IO monad, 

which again is a function that takes a World 

and returns a x and a new, updated World. 

We give it the World we got back from getting x out of its monad, 

and the thing it gives back to us is the t with a final version of the World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects in Haskell

ioXWorld (t, World)
f

World
(t, World)

    f x  world1 

  world0  (x, world1) 

t

x

world1

the implementation of bind 



Young Won Lim
12/11/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28

