Gauss Elimination (1A)

[^0]Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice.

Based on

Lab Manual for Linear Algebra http://joshua.smcvt.edu/linearalgebra/lab.pdf

RDF

QQ : for the rational numbers
RR : for real numbers with arbitrary precision
RDF: for real numbers with double-length floats; for
CC : for the complex numbers with arbitrary precision
CDF: for the complex numbers with double floats
ZZ : for the integers.

```
M = matrix ( QQ, [[1,2,3],[4,5,6],[7,8,9]] )
M[1,2]
M.nrows()
M.ncols()
v = vector ( QQ , [2/3,-1/3,1/2] )
M1 = M.augment(v)
M1 = M.augment(v, subdivide=True)
M1 = M.swap_rows(0, 1)
M1 = M.rescale_row(0, 1/2)
M1 = M.add_multiple_of_the_row(2,0,-2)
```

[^1]
RDF

$$
\begin{aligned}
& \operatorname{var}\left(' x, y, z^{\prime}\right) \\
& \text { eqns }=\left[-3 / 4^{\star} z==-1,2^{*} y+z==2, x+2^{*} z==1 / 2\right] \\
& \text { solve }(\text { eqns }, x, y, z) \\
& (x, y, z) \\
& {[[x==(-13 / 6), y==(1 / 3), z==(4 / 3)]]}
\end{aligned}
$$

RDF

```
def check_nonsingular(mat):
    if not ( mat.is_square()):
        print " ERROR : mat must be square "
        return
    p = mat . pivots ()
    for col in range ( mat . ncols ()):
        if not ( col in p ):
            print " nonsingular "
            break
N = Matrix ( QQ , [[1,2,3], [4,5,6], [7,8,9]] )
check_nonsingular (N)
N = Matrix ( QQ , [[1,0,0], [0,1,0], [0,0,1]] )
check_nonsingular (N)
```


References

[1] http://joshua.smcvt.edu/linearalgebra/lab.pdf

[^0]: Copyright (c) 2016 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

[^1]: M1.echelon_form()
 M1.rref()
 M1.pivots()

