
Young Won Lim
12/14/17

Functor (1A)

Young Won Lim
12/14/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Functor (1A) 3 Young Won Lim
12/14/17

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 4 Young Won Lim
12/14/17

Typeclasses and Instances

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 a function definition

 (==) :: a -> a -> Bool - a type declaration

 x == y = not (x /= y)

 a function type

 (==) :: a -> a -> Bool - a type declaration

 A function definition can be overloaded

such behavior is defined by

● function definition

● function type declaration only

Functor (1A) 5 Young Won Lim
12/14/17

Typeclasses and Type

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

No relation with classes in Java or C++

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type is an instance of a typeclass implies

the function types declared by the typeclass
are defined (implemented) in the instance

so that we can use the functions
that the typeclass defines with that type

Functor (1A) 6 Young Won Lim
12/14/17

A Concrete Type and a Type Constructor

a : a concrete type

Maybe : not a concrete type

: a type constructor that takes one parameter

 in order to produces a concrete type.

Maybe a : a concrete type

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 7 Young Won Lim
12/14/17

Functor typeclass

the Functor typeclass is basically

for things that can be mapped over

ex) mapping over lists

the list type is a Functor typeclass

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 8 Young Won Lim
12/14/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

The Functor typeclass

defines the function fmap

without a default implementation

the type variable f

not a concrete type (a concrete type can hold a value)

a type constructor taking one type parameter

Maybe Int : a concrete type

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

function fmap

type constructor f
function func

Functor (1A) 9 Young Won Lim
12/14/17

Function map & fmap

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

fmap takes
● a function from one type to another (a -> b)
● a Functor f applied with one type (f a)

fmap returns
● a Functor f applied with another type (f b)

 map :: (a -> b) -> [a] -> [b]

map takes
● a function from one type to another (* 2)
● take a list of one type [1, 2, 3]
● returns a list of another type [2, 4, 6]

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

(a -> b) -> f a -> f b

function type type

func

Functor (1A) 10 Young Won Lim
12/14/17

List : an instance of the Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

a list is an instance of the Functor typeclass.

 instance Functor [] where

 fmap = map

f : a type constructor that takes one type

[] : a type constructor that takes one type

[a] : a concrete type ([Int], [String] or [[String]])

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

map
[a] [b]

function fmap

type constructor f
function func

Functor (1A) 11 Young Won Lim
12/14/17

List Examples

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

 instance Functor [] where

 fmap = map

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 map :: (a -> b) -> [a] -> [b]

 ghci> fmap (*2) [1..3]

 [2,4,6]

 ghci> map (*2) [1..3]

 [2,4,6]

*21 2

map[1,2,3] [2,4,6]

function fmap

type constructor f
function func

map

[]
(*2)

Functor (1A) 12 Young Won Lim
12/14/17

Maybe : an instance of the Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f a

f b

f

Maybe a

Maybe b

Maybe

 (a -> b) func

 instance : implementing fmap

Functor (1A) 13 Young Won Lim
12/14/17

f : a type variable

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

f : a type variable

f Maybe

Functor (1A) 14 Young Won Lim
12/14/17

f : a type constructor

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f : a type constructor taking one type parameter

f a

f b

Maybe a

Maybe b

type

f Maybe typetype

type

type

type
Maybe af a

Functor (1A) 15 Young Won Lim
12/14/17

f and Maybe

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

Maybe : an instance of Functor typeclass

f : a type variable

f : a type constructor taking one type parameter

Functor (1A) 16 Young Won Lim
12/14/17

Maybe : an argument to fmap, together with a

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap func (Just x) = Just (func x)

fmap func Nothing = Nothing

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

Functor (1A) 17 Young Won Lim
12/14/17

Maybe : an argument to fmap, together with a

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap :: (a -> b) -> f a -> f b fmap :: (a -> b) -> Maybe a -> Maybe b

Functor (1A) 18 Young Won Lim
12/14/17

The distinct two f’s

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fa b

fmapf a f b the type constructor f

the argument function f

different !

Functor (1A) 19 Young Won Lim
12/14/17

An argument f to fmap vs. Functor f

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

f an argument function to fmap

f is different from the type constructor f

 f : a -> b func : a -> b

 f

func

 f

f : a type variable

f : a type constructor taking one type parameter

Functor (1A) 20 Young Won Lim
12/14/17

Maybe Functor

fa b

fmapf a f b

fa b

fmapMaybe a Maybe b

funca b

fmapMaybe a Maybe b

Type Class

Instance

Functor (1A) 21 Young Won Lim
12/14/17

Maybe Functor Examples (1)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f
a b

fmap
f a f b

*2200 400

fmapJust 200 Just 400

 ghci> fmap (*2) (Just 200)

 Just 400

 ghci> fmap (*2) Nothing

 Nothing

 f

 f

Functor (1A) 22 Young Won Lim
12/14/17

Maybe Functor Examples (2)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

 (++ "BBB")

fmap

 ghci> fmap (++ "BBB") (Just "AAA")

 Just "AAABBB"

 ghci> fmap (++ "BBB") Nothing

 Nothing

"AAA"

Just "AAA"

"AAABBB"

Just "AAABBB"

 f

 f

Functor (1A) 23 Young Won Lim
12/14/17

Maybe as a functor

Functor typeclass:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a is an instance of a functor type class

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor (1A) 24 Young Won Lim
12/14/17

Maybe as a functor

A function f transformed with fmap
can work on a Maybe value

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

 father :: Person -> Maybe Person
 mother :: Person -> Maybe Person

 f :: Int -> Int
fmap f :: Maybe Integer -> Maybe Integer

a Maybe Integer value: m_x

fmap f m_x

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor (1A) 25 Young Won Lim
12/14/17

Transforming operations

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

f
Int Int

fmap f
Maybe Int Maybe Int

fmap f
F Int F Int

f
a b

fmap
F a F b

Functor (1A) 26 Young Won Lim
12/14/17

fmap func

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap func
Maybe a Maybe b

fmap func Just x fmap func Just x

Functor (1A) 27 Young Won Lim
12/14/17

Apply a function to lifted type values

m_x :: Maybe Integer (Just 101, Nothing, …)

f :: Int -> Int

fmap f m_x

to apply the function f directly to the Maybe Integer
without concerning whether it is Nothing or not

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

m_x :: f Integer
m_x :: Maybe Integer

Function f
Functor f

fmap f

Functor (1A) 28 Young Won Lim
12/14/17

Maybe as a functor

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fmap f m_x

Function f of (a -> b)

lifted type

A Functor f applied with one type

f a or f b (f is not f) m_x :: f Integer
m_x :: Maybe Integer

Function f
Functor f

Functor (1A) 29 Young Won Lim
12/14/17

Maybe as a functor

Can apply a whole chain of
lifted Integer -> Integer functions
to Maybe Integer values
and only have to worry about
explicitly checking for Nothing
once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

f
Int Int

fmap f
Maybe Int Maybe Int

F Int Int

Maybe F Int Maybe Int

h

fmap h

 class Functor f where

 fmap :: (F Int -> Int) -> f Int -> f Int

 instance Functor Maybe where

 fmap :: (F Int -> Int) -> Maybe F Int -> Maybe Int

 fmap h (Just f_x) = Just (h f_x)

 fmap h Nothing = Nothing

Functor (1A) 30 Young Won Lim
12/14/17

Maybe as a functor

So if you have a Maybe Integer value m_x and an Int -> Int function f,
you can do fmap f m_x to apply the function f directly to the Maybe Integer
without worrying if it's actually got a value or not.

In fact, you could apply a whole chain of lifted Integer -> Integer functions to Maybe Integer
values and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor (1A) 31 Young Won Lim
12/14/17

Maybe instances

Maybe is

● an instance of Eq and Ord (as a base type)

● an instance of Functor

● an instance of Monad

https://wiki.haskell.org/Maybe

Functor (1A) 32 Young Won Lim
12/14/17

Maybe class

The Maybe type definition

 data Maybe a = Just a | Nothing
 deriving (Eq, Ord)

Maybe is
an instance of Eq and Ord (as a base type)

https://wiki.haskell.org/Maybe

Functor (1A) 33 Young Won Lim
12/14/17

Maybe Functor

For Functor, the fmap f
moves inside the Just constructor
is identity on the Nothing constructor.

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

https://wiki.haskell.org/Maybe

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

Functor (1A) 34 Young Won Lim
12/14/17

Maybe Functor

For Functor, the fmap f
moves inside the Just constructor
is identity on the Nothing constructor.

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

https://wiki.haskell.org/Maybe

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

Functor (1A) 35 Young Won Lim
12/14/17

Maybe Monad

For Monad, the bind operation
passes through Just, while
Nothing will force the result to always be Nothing.

https://wiki.haskell.org/Maybe

Functor (1A) 36 Young Won Lim
12/14/17

Maybe as Monad

maybe :: b -> (a->b) -> Maybe a -> b

The maybe function takes
a default value (b),
a function (a->b), and
a Maybe value (Maybe a).

If the Maybe value is Nothing,
the function returns the default value.

Otherwise, it applies the function to the value inside the Just and returns the result.

>>> maybe False odd (Just 3)
True

>>> maybe False odd Nothing
False

https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-
Maybe.html

Functor (1A) 37 Young Won Lim
12/14/17

Monad

a Monad is just a special Functor with extra features

Monads like IO map types to new types

that represent "computations that result in values"

can lift regular functions into Monad types

via a liftM function (like a fmap function)

liftM transform a regular function

into a "computations that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor (1A) 38 Young Won Lim
12/14/17

Maybe as a Monad

Maybe is also a Monad

represents “computations that could fail to return a value"

an immediate abort

a valueless return in the middle of a computation.

enable a whole bunch of computations

without explicit checking for errors in each step

a computation on Maybe values stops

as soon as a Nothing is encountered

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor (1A) 39 Young Won Lim
12/14/17

Maybe as a Monad

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x

 g :: Int -> Maybe Int
 g 100 = Nothing
 g x = Just x

 h ::Int -> Maybe Int
 h x = case f x of
 Just n -> g n
 Nothing -> Nothing

 h' :: Int -> Maybe Int
 h' x = do n <- f x
 g n

 h & h' give the same results
 h 0 = h' 0 = h 100 = h' 100 = Nothing;
 h x = h' x = Just x

https://wiki.haskell.org/Maybe

if x==0 then Nothing else Just x

if x==100 then Nothing else Just x

if f x==Nothing then Nothing else g n

g (f x)

Functor (1A) 40 Young Won Lim
12/14/17

Maybe as a Library Function

When the module is imported import Data.Maybe

maybe :: b->(a->b) -> Maybe a -> b

 Applies the second argument (a->b) to the third Maybe a,
 when it is Just x, otherwise returns the first argument (b).

isJust, isNothing
 Test the argument, returing a Bool based on the constructor.

ListToMaybe , maybeToList
 Convert to/from a one element or empty list.

mapMaybe
 A different way to filter a list.

https://wiki.haskell.org/Maybe

Functor (1A) 41 Young Won Lim
12/14/17

Functor Typeclass Examples (1)

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fa b

fmapIO a IO b

action1 fresult

(a -> b) -> IO a -> IO b

f action

f result

Functor (1A) 42 Young Won Lim
12/14/17

Functor Typeclass Examples (2)

 main = do line <- getLine

 let line' = reverse line

 putStrLn $ "You said " ++ line' ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"

 main = do line <- fmap reverse getLine

 putStrLn $ "You said " ++ line ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 fmap reverse getLine = do

 result <- getLine

 return (reverse result)

Functor (1A) 43 Young Won Lim
12/14/17

Functor Typeclass Examples (3)

 instance Functor ((->) r) where

 fmap f g = (\x -> f (g x))

A function takes any thing and returns any thing

g :: a -> b

g :: r -> a

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

fmap :: (a -> b) -> (r -> a) -> (r -> b)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fa b

fmapg a g b

ga b

gr a

gr b

Functor (1A) 44 Young Won Lim
12/14/17

Functor Typeclass Examples (4)

 instance Functor ((->) r) where

 fmap f g = (\x -> f (g x))

 instance Functor ((->) r) where

 fmap = (.)

 ghci> :t fmap (*3) (+100)

 fmap (*3) (+100) :: (Num a) => a -> a

 ghci> fmap (*3) (+100) 1

 303

 ghci> (*3) `fmap` (+100) $ 1

 303

 ghci> (*3) . (+100) $ 1

 303

 ghci> fmap (show . (*3)) (*100) 1

 "300"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

(*3)a b

fmap(+100) a (+100) b

Functor (1A) 45 Young Won Lim
12/14/17

Functor Typeclass Examples (5)

 ghci> :t fmap (*2)

 fmap (*2) :: (Num a, Functor f) => f a -> f a

 ghci> :t fmap (replicate 3)

 fmap (replicate 3) :: (Functor f) => f a -> f [a]

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(*2)a a

fmapf a f a

(replicate 3)a [a]

fmapf a f [a]

Functor (1A) 46 Young Won Lim
12/14/17

Functor Typeclass Examples (6)

 ghci> fmap (replicate 3) [1,2,3,4]

 [[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

 ghci> fmap (replicate 3) (Just 4)

 Just [4,4,4]

 ghci> fmap (replicate 3) (Right "blah")

 Right ["blah","blah","blah"]

 ghci> fmap (replicate 3) Nothing

 Nothing

 ghci> fmap (replicate 3) (Left "foo")

 Left "foo"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 47 Young Won Lim
12/14/17

Functor Laws

fmap id = id

id :: a -> a

id x = x

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

 instance Functor Maybe where

 fmap id (Just x) = Just (id x)

 fmap id Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

idF a F a

Just x Just x

Nothing Nothing

Functor (1A) 48 Young Won Lim
12/14/17

Functor Typeclass

 ghci> fmap id (Just 3)

 Just 3

 ghci> id (Just 3)

 Just 3

 ghci> fmap id [1..5]

 [1,2,3,4,5]

 ghci> id [1..5]

 [1,2,3,4,5]

 ghci> fmap id []

 []

 ghci> fmap id Nothing

 Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 49 Young Won Lim
12/14/17

Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

af . ga

fmapF a

ga

fmap F a

a

F a

ga

fmapF a

fa

fmap

f

F a

a a

F a

Functor (1A) 50 Young Won Lim
12/14/17

Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fmap (f . g) Nothing = Nothing

fmap f (fmap g Nothing) = Nothing

fmap (f . g) (Just x) = Just ((f . g) x) = Just (f (g x))

fmap f (fmap g (Just x)) = fmap f (Just (g x)) = Just (f (g x))

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Young Won Lim
12/14/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51

