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Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Typeclasses  and Instances

Typeclasses are like interfaces

defines some behavior 
comparing for equality 
comparing for ordering 
enumeration

Instances of that typeclass
 types possessing such behavior 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

    a function definition

       (==) :: a -> a -> Bool - a type declaration 

        x == y = not (x /= y)  

    a function type 

       (==) :: a -> a -> Bool - a type declaration 

     A function definition can be overloaded 

such behavior is defined by 

● function definition 

● function type declaration only 
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Typeclasses and Type

Typeclasses are like interfaces

defines some behavior 
comparing for equality 
comparing for ordering 
enumeration

Instances of that typeclass
 types possessing such behavior 

No relation with classes in Java or C++

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type is an instance of a typeclass implies

the function types declared by the typeclass 
are defined (implemented) in the instance

so that we can use the functions
that the typeclass defines with that type
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A Concrete Type and a Type Constructor 

a : a concrete type 

Maybe : not a concrete type 

: a type constructor that takes one parameter 

  in order to produces a concrete type. 

Maybe a : a concrete type 

 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
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Functor typeclass

the Functor typeclass is basically 

for things that can be mapped over

ex) mapping over lists

the list type is a Functor typeclass

    

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
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Functor typeclass

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

The Functor typeclass 

defines the function fmap 

without a default implementation

the type variable f 

not a concrete type (a concrete type can hold a value) 

a type constructor taking one type parameter

Maybe Int : a concrete type

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

function fmap

type constructor  f
function func 
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Function map & fmap 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

fmap takes 
● a function from one type to another  (a -> b)
● a Functor f applied with one type  (f a)

fmap returns 
● a Functor f applied with another type (f b)

     map :: (a -> b) -> [a] -> [b]

map takes 
● a function from one type to another (* 2) 
● take a list of one type [ 1, 2, 3 ]
● returns a list of another type [ 2, 4, 6 ] 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

(a -> b)   ->   f a   ->   f b 

function type type

func
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List : an instance of the Functor typeclass

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

     map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

a list is an instance of the Functor typeclass.

    instance Functor [ ] where  

        fmap = map  

f : a type constructor that takes one type 

[ ] : a type constructor that takes one type 

[a] : a concrete type  ([Int], [String] or [[String]] )

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

map
[ a ] [ b ]

function fmap

type constructor  f
function func 
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List Examples

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

     map :: (a -> b) -> [a] -> [b]

    instance Functor [ ] where  

        fmap = map  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

   map :: (a -> b) -> [a] -> [b]  

    ghci> fmap (*2) [1..3]  

    [2,4,6]  

    ghci> map (*2) [1..3]  

    [2,4,6]  

*21 2

map[1,2,3] [2,4,6]

function fmap

type constructor  f
function func 

map

[ ]
(*2)
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Maybe : an instance of the Functor typeclass

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f a

f b

f 

Maybe a

Maybe b

Maybe 

 (a -> b) func

    instance : implementing fmap 
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f : a type variable 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f   a f   b

func
a b

fmap
Maybe   a Maybe   b

f : a type variable 

f Maybe 
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f : a type constructor

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f : a type constructor taking one type parameter

f a

f b

Maybe a

Maybe b

type

f Maybe typetype

type

type

type
Maybe   af   a
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f and Maybe

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

Maybe : an instance of Functor typeclass

f : a type variable 

f : a type constructor taking one type parameter
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Maybe : an argument to fmap, together with a 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap func (Just x) = Just (func  x)  

fmap func Nothing = Nothing 

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f (Just x) = Just (f  x)  

fmap f Nothing = Nothing 
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Maybe : an argument to fmap, together with a 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap :: (a -> b) -> f a -> f b fmap :: (a -> b) -> Maybe a -> Maybe b
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The distinct two f’s

    class Functor  f  where  

        fmap :: (a -> b) ->  f  a ->  f  b  

    instance Functor Maybe where  

        fmap  f  (Just x) = Just ( f  x)  

        fmap  f  Nothing = Nothing  

fa b

fmapf a f b the type constructor f 

the argument function f

different !
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An argument f to fmap vs. Functor f

    class Functor  f  where  

        fmap :: (a -> b) ->  f  a ->  f  b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

    instance Functor Maybe where  

        fmap  f  (Just x) = Just ( f  x)  

        fmap  f  Nothing = Nothing  

f an argument function to fmap

f is different from the type constructor f 

 f  : a -> b  func : a -> b

 f 

func

 f 

f : a type variable 

f : a type constructor taking one type parameter



Functor (1A) 20 Young Won Lim
12/14/17

Maybe Functor

fa b

fmapf a f b

fa b

fmapMaybe a Maybe b

funca b

fmapMaybe a Maybe b

Type Class

Instance 
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Maybe Functor Examples (1)

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f
a b

fmap
f a f b

*2200 400

fmapJust 200 Just 400

    ghci> fmap (*2) (Just 200)  

    Just 400  

    ghci> fmap (*2) Nothing  

    Nothing  

 f 

 f 
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Maybe Functor Examples (2)

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

 (++ "BBB")

fmap

    ghci> fmap (++ "BBB") (Just "AAA")  

    Just "AAABBB"  

    ghci> fmap (++ "BBB") Nothing  

    Nothing  

"AAA"

Just "AAA"

"AAABBB"

Just "AAABBB"

 f 

 f 
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Maybe as a functor

Functor typeclass:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a is an instance of a functor type class

Functor provides fmap method  
maps functions of the base type (such as Integer) 
to functions of the lifted type (such as Maybe Integer). 

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell
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Maybe as a functor

A function f transformed with fmap 
can work on a Maybe value

case maybeVal of
  Nothing  -> Nothing         -- there is nothing, so just return Nothing
  Just val -> Just (f val)       -- there is a value, so apply the function to it

    father :: Person -> Maybe Person
    mother :: Person -> Maybe Person

 f   :: Int    -> Int 
fmap  f  :: Maybe Integer -> Maybe Integer 

a Maybe Integer value:  m_x 

fmap  f    m_x 

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell
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Transforming operations 

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor provides fmap method  
maps functions of the base type (such as Integer) 
to functions of the lifted type (such as Maybe Integer). 

f
Int Int

fmap f
Maybe Int Maybe Int

fmap f
F Int F Int

f
a b

fmap
F a F b
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fmap func

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x)  = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap func
Maybe a Maybe b

fmap   func  Just x fmap func  Just x 



Functor (1A) 27 Young Won Lim
12/14/17

Apply a function to lifted type values 

m_x :: Maybe Integer ( Just 101, Nothing, … ) 

f ::  Int -> Int 

fmap f m_x 

to apply the function f directly to the Maybe Integer 
without concerning whether it is Nothing or not

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

m_x :: f       Integer
m_x :: Maybe  Integer

Function  f
Functor   f

fmap f
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Maybe as a functor

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

fmap   f   m_x 

Function f of (a -> b)

lifted type 

A Functor f applied with one type

f a  or f b   (f is not f) m_x :: f       Integer
m_x :: Maybe  Integer

Function  f
Functor   f
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Maybe as a functor

Can apply a whole chain of 
lifted Integer -> Integer functions 
to Maybe Integer values 
and only have to worry about 
explicitly checking for Nothing 
once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

f
Int Int

fmap f
Maybe Int Maybe Int

F Int Int

Maybe F Int Maybe Int

h

fmap h

    class Functor f where  

        fmap :: (F Int -> Int) -> f Int -> f Int  

    instance Functor Maybe where  

        fmap :: (F Int -> Int) -> Maybe F Int -> Maybe Int  

        fmap h (Just f_x) = Just (h f_x)  

        fmap h Nothing = Nothing  
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Maybe as a functor

So if you have a Maybe Integer value m_x and an Int -> Int function f, 
you can do fmap f m_x to apply the function f directly to the Maybe Integer 
without worrying if it's actually got a value or not. 

In fact, you could apply a whole chain of lifted Integer -> Integer functions to Maybe Integer
values and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Maybe instances 

Maybe is  

● an instance of Eq and Ord (as a base type)

● an instance of Functor

● an instance of Monad

https://wiki.haskell.org/Maybe
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Maybe class 

The Maybe type definition

 
 data Maybe a = Just a | Nothing
     deriving (Eq, Ord)

Maybe is  
an instance of Eq and Ord (as a base type)

https://wiki.haskell.org/Maybe
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Maybe Functor

For Functor, the fmap f 
moves  inside the Just constructor 
is identity on the Nothing constructor.

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

https://wiki.haskell.org/Maybe

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  
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Maybe Functor

For Functor, the fmap f 
moves  inside the Just constructor 
is identity on the Nothing constructor.

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

https://wiki.haskell.org/Maybe

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  
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Maybe Monad

For Monad, the bind operation 
passes through Just, while 
Nothing will force the result to always be Nothing. 

https://wiki.haskell.org/Maybe
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Maybe as Monad  

maybe :: b -> (a->b) -> Maybe a -> b

The maybe function takes 
a default value (b), 
a function (a->b), and 
a Maybe value (Maybe a). 

If the Maybe value is Nothing, 
the function returns the default value. 

Otherwise, it applies the function to the value inside the Just and returns the result.

>>> maybe False odd (Just 3)
True

>>> maybe False odd Nothing
False

https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-
Maybe.html
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Monad 

a Monad is just a special Functor with extra features

Monads like IO map types to new types 

that represent "computations that result in values" 

can lift regular functions into Monad types 

via a liftM function (like a fmap function)

liftM transform a regular function 

into a "computations that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Maybe as a Monad 

Maybe is also a Monad

represents “computations that could fail to return a value"

an immediate abort 

a valueless return in the middle of a computation.

enable a whole bunch of computations 

without explicit checking for errors in each step

a computation on Maybe values stops 

as soon as a Nothing is encountered

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Maybe as a Monad  

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x
 
 g :: Int -> Maybe Int
 g 100 = Nothing
 g x     = Just x
 
 h ::Int -> Maybe Int
 h x = case f x of
              Just n -> g n
              Nothing -> Nothing
 
 h' :: Int -> Maybe Int
 h' x = do n <- f x
                g n

 h & h' give the same results
 h 0 = h' 0 =  h 100 = h' 100  = Nothing;
 h x = h' x = Just x
 

https://wiki.haskell.org/Maybe

if x==0 then Nothing  else Just x 

if x==100 then Nothing  else Just x 

if f x==Nothing then Nothing  else g n  

g ( f x) 
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Maybe as a Library Function 

When the module is imported import Data.Maybe

maybe :: b->(a->b) -> Maybe a -> b
 
    Applies the second argument (a->b) to the third Maybe a, 
    when it is Just x, otherwise returns the first argument (b). 

isJust, isNothing
     Test the argument, returing a Bool based on the constructor. 

ListToMaybe , maybeToList
    Convert to/from a one element or empty list. 

mapMaybe
    A different way to filter a list. 

https://wiki.haskell.org/Maybe
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Functor Typeclass Examples (1)

    instance Functor IO where  

        fmap f action = do  

            result <- action  

            return (f result)  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fa b

fmapIO a IO b

action1 fresult

(a -> b)   ->   IO a   ->   IO b 

f action

f result
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Functor Typeclass Examples (2)

    main = do line <- getLine   

              let line' = reverse line  

              putStrLn $ "You said " ++ line' ++ " backwards!"  

              putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"  

    main = do line <- fmap reverse getLine  

              putStrLn $ "You said " ++ line ++ " backwards!"  

              putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

    instance Functor IO where  

        fmap f action = do  

            result <- action  

            return (f result)  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

        fmap reverse getLine = do  

            result <- getLine  

            return (reverse result)  
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Functor Typeclass Examples (3)

    instance Functor ((->) r) where  

        fmap f g =  (\x -> f (g x))  

A function takes any thing and returns any thing

g :: a -> b

g :: r -> a

 

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

fmap :: (a -> b) -> (r -> a) -> (r -> b)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

fa b

fmapg a g b

ga b

gr a

gr b
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Functor Typeclass Examples (4)

    instance Functor ((->) r) where  

        fmap f g =  (\x -> f (g x))  

    instance Functor ((->) r) where  

        fmap = ( . )  

    ghci> :t fmap (*3) (+100)  

    fmap (*3) (+100) :: (Num a) => a -> a  

    ghci> fmap (*3) (+100) 1  

    303  

    ghci> (*3) `fmap` (+100) $ 1  

    303  

    ghci> (*3) . (+100) $ 1  

    303  

    ghci> fmap (show . (*3)) (*100) 1  

    "300"  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

(*3)a b

fmap(+100) a (+100) b
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Functor Typeclass Examples (5)

    ghci> :t fmap (*2)  

    fmap (*2) :: (Num a, Functor f) => f a -> f a  

    ghci> :t fmap (replicate 3)  

    fmap (replicate 3) :: (Functor f) => f a -> f [a]  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(*2)a a

fmapf a f a

(replicate 3)a [ a ]

fmapf a f [ a ]
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Functor Typeclass Examples (6)

    ghci> fmap (replicate 3) [1,2,3,4]  

    [[1,1,1],[2,2,2],[3,3,3],[4,4,4]] 

 

    ghci> fmap (replicate 3) (Just 4)  

    Just [4,4,4]  

    ghci> fmap (replicate 3) (Right "blah")  

    Right ["blah","blah","blah"]  

    ghci> fmap (replicate 3) Nothing  

    Nothing  

    ghci> fmap (replicate 3) (Left "foo")  

    Left "foo"  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Functor Laws

fmap id = id

id :: a -> a 

id    x = x

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

 

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

    instance Functor Maybe where  

        fmap id (Just x) = Just (id x)  

        fmap id Nothing = Nothing  

 
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

idF a F a

Just x Just x

Nothing Nothing
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Functor Typeclass

    ghci> fmap id (Just 3)  

    Just 3  

    ghci> id (Just 3)  

    Just 3  

    ghci> fmap id [1..5]  

    [1,2,3,4,5]  

    ghci> id [1..5]  

    [1,2,3,4,5]  

    ghci> fmap id []  

    []  

    ghci> fmap id Nothing  

    Nothing  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

af . ga

fmapF a

ga

fmap F a

a

F a

ga

fmapF a

fa

fmap

f

F a

a a

F a
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Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

fmap (f . g) Nothing = Nothing

fmap f (fmap g Nothing) = Nothing

fmap (f . g) (Just x) = Just ((f . g) x) = Just (f (g x))

fmap f (fmap g (Just x)) = fmap f (Just (g x)) = Just (f (g x))

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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