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Central Limit Theorem

Definition
the central limit theorem says that the probability distribution
function of the sum of large number of random variables
approaches a Gauassian distribution.
This theorem is known to apply some cases of statistically
independent random variables.
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Central Limit Theorem
Uneqaul Distribution Case

Definition
the sum Y of N independent random variables X1,X2, ...,XN

Let Y = X1 +X2 + · · ·+XN , then

Y N = X 1 +X 2 + · · ·+XN

σ
2
YN

= σ
2
X1

+ σ
2
X2

+ · · ·+ σ
2
XN

the probability distribution of Y asymptotically approaches
to Gaussian distribution function as N → ∞
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Sufficient Conditions
Uneqaul Distribution Case

Definition

σ
2
Xi

> B1 > 0 i = 1,2, ...,N

E [|Xi −X i |3] < B2 i = 1,2, ...,N

whre B1 and B2 are positive numbers
these conditions guarantee that no one random variable in the sum
dominates
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Distribution vs density functions
Uneqaul Distribution Case

the central limit theorem guarantees

only that the distribution of the sum of random variables
become Gaussian
the density of the sum of random variables
is not always Gaussian

the sum of continuous random variables :
under certain conditions on individual random variables
the density of the sum is always Gaussian

the sum of discrete random variables :
the density function may contain impulses
and thus is not Gaussian.
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Discrete Random Variable Examples
distribution may contain impulses

the sum Y of N independent discrete random variables
Y = X1 +X2 + ...+XN

discrete random variable
density function may contain impulses
therefore the density function is not Gaussian
although the distribution approaches Gaussian

when the possible discrete values of each random variable are
kb,k = 0,±1,±2, ..., where b is a constant

the envelope of the impulses in the density of the sum
will be Gaussian
with the mean YN and variance σ2

YN
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Central Limit Theorem (1)
Eqaul Distribution Case

Definition
the sum Y of N independent random variables X1,X2, ...,XN

assume that X1,X2, ...,XN have the same distribution function.
Let YN = X1 +X2 + · · ·+XN ,
then WN = (YN −Y N)/σYN

is
the zero-mean, unit-variance random variable
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Central Limit Theorem (2)
Eqaul Distribution Case

Definition

Let YN = X1 +X2 + · · ·+XN and WN = (YN −Y N)/σYN

WN = (YN −Y N)/σYN

=
N

∑
i=1

(Xi −X i )

/[
N

∑
i=1

σ
2
X i

]1/2

=
1√
NσX

N

∑
i=1

(Xi −X i )

where Xi = X and σ2
Xi

= σX
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Central Limit Theorem (3)
Eqaul Distribution Case

WN = (YN −Y N)

/
σYN

=

(
Xi −

N

∑
i=1

X i

)/[
N

∑
i=1

σ
2
X i

]1/2

=
N

∑
i=1

(
Xi −X i

)/[
N

∑
i=1

σ
2
X i

]1/2

=
N

∑
i=1

(
Xi −X i

)/[
Nσ

2
X

]1/2
=

1√
NσX

N

∑
i=1

(Xi −X i )

where X i = X and σ2
Xi

= σX

Y N = X 1 +X 2 + · · ·+XN and σ2
YN

= σ2
X1

+ σ2
X2

+ · · ·+ σ2
XN
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Characteristic Function(1)
Eqaul Distribution Case

the characteristic function of WN

a zero mean, unit variance Gaussian random variable

ΦWN
(ω) = exp(−ω

2/2)

WN is the density of the Gaussian random variable
Fourier transforms are unique

ΦWN
(ω) = E [e jωWN ]
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Characteristic Function(2)
Eqaul Distribution Case

WN =
1√
NσX

N

∑
i=1

(Xi −X i )

ΦWN
(ω) = E [e jωWN ] = E

[
exp

(
jω√
NσX

N

∑
i=1

(Xi −X )

)]

= E

[
exp

(
jω√
NσX

(X1−X )

)
· · ·exp

(
jω√
NσX

(XN −X )

)]
=

{
E

[
exp

(
jω√
NσX

(X1−X )

)]}N

E [X1] = E [X2] = · · ·= E [XN ]
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Characteristic Function (3)
Eqaul Distribution Case

ΦWN
(ω) =

{
E

[
exp

(
jω√
NσX

(X1−X )

)]}N

ln[ΦWN
(ω)] = N ln

{
E

[
exp

(
jω√
NσX

(X1−X )

)]}

E

[
exp

(
jω√
NσX

(X1−X )

)]
= E

[
1+

jω√
NσX

(X1−X ) +

(
jω√
NσX

)2
(X1−X )2 +

RN

N

]

= 1− ω2

2N
+

E [RN ]

N

where E [RN ] approaches zero as N → ∞
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Characteristic Function (4)
Eqaul Distribution Case

ln[ΦWN
(ω)] = N ln

[
1− ω2

2N
+

E [RN ]

N

]
ln[1−z] =−

[
z +

z2

2
+

z3

3
+ · · ·

]
, |z |< 1

ln[ΦWN
(ω)] =−ω2

2
+E [RN ]− N

2

[
ω2

2N
+

E [RN ]

N

]2
+ · · ·

lim
N→∞

ln[ΦWN
(ω)] = ln

[
lim
N→∞

ΦWN
(ω)

]
=−ω2

2

lim
N→∞

ΦWN
(ω) = e−

ω2
2
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