# Differentiation of Continuous Functions

Young W Lim

Sep 10, 2024

Young W Lim Differentiation of Continuous Functions

Copyright (c) 2024 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.



. . . . . . . .

Based on Introduction to Matrix Algebra, Autar Kaw https://ma.mathforcollege.com

## Outline

#### 1 Approximations of a first derivative

- Forward Difference Approximation
- Backward Difference Approximation
- Taylor Series
- Central Divided Difference

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

## Outline

### 1 Approximations of a first derivative

- Forward Difference Approximation
- Backward Difference Approximation
- Taylor Series
- Central Divided Difference

< ∃ >

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

## Forward Difference Approximation (1)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

for a finite  $\Delta x > 0$ 

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

伺 ト イヨ ト イヨト

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Forward Difference Approximation (2)

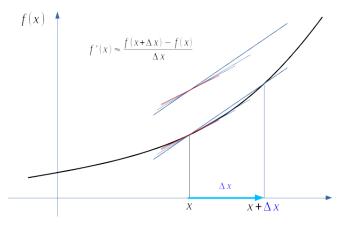



Figure: forward difference approximation

3 🕨 🖌 3

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Forward Difference Approximation (3)

a forward difference approximation as you are taking a point forward from x.

To find the value of f'(x) at  $x = x_i$ , we may choose another point  $\Delta x$  forwad as  $x = x_{i+1}$ .

$$f'(x) pprox rac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{\Delta x}$$
$$= \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

## Outline

- Approximations of a first derivative
   Forward Difference Approximation
   Backward Difference Approximation
  - Taylor Series
  - Central Divided Difference

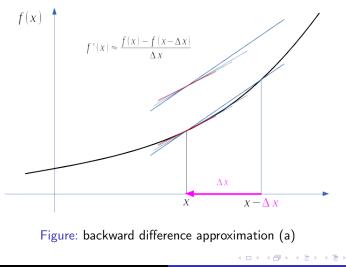
< ∃ →

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

Backward Difference Approximation (1a)

# forward difference approximation

for a finite  $\Delta x > 0$ ,


$$f'(x) \approx rac{f(x + \Delta x) - f(x)}{\Delta x}$$

backward difference approximation for a finite  $\Delta x < 0$ , then  $-\Delta x > 0$ ,

$$f'(x) pprox rac{f(x - \Delta x) - f(x)}{-\Delta x}$$
  
=  $rac{f(x) - f(x - \Delta x)}{\Delta x}$ 

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Backward Difference Approximation (1b)



Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

Backward Difference Approximation (2a)

## forward difference approximation

for a finite  $\Delta x > 0$ ,

$$f'(x) pprox rac{f(x + \Delta x) - f(x)}{\Delta x}$$

# backward difference approximation for a finite $\Delta x > 0$ , then $-\Delta x < 0$ ,

$$f'(x) \approx \frac{f(x) - f(x - \Delta x)}{x - (x - \Delta x)}$$
$$= \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Backward Difference Approximation (2b)




Figure: backward difference approximation (b)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Backward Difference Approximation (3)

a backward difference approximation as you are taking a point backward from x.

To find the value of f'(x) at  $x = x_i$ , we may choose another point  $\Delta x$  backwad as  $x = x_{i-1}$ .

$$f'(x) \approx \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{\Delta x}$$
$$= \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Outline

## 1 Approximations of a first derivative

- Forward Difference Approximation
- Backward Difference Approximation

#### Taylor Series

• Central Divided Difference

< ∃ >

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Taylor Series (1)

the Taylor series of a function f(x), that is infinitely differentiable at a point *a* is the power series

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

- 4 同 1 4 回 1 4 回 1

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Taylor Series (2)

If f(x) is given by a convergent power series in an open disk centred at *a*, it is said to be *analytic* in this region.

Thus for x in this region, f is given by a convergent power series

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

伺 ト イヨト イヨト

Forward Difference Approximation Backward Difference Approximation **Taylor Series** Central Divided Difference

# Deriving Forward Difference Approximation (1)

A Taylor expansion approximate f(x), using  $f(a), f'(a), f''(a), \cdots$ ,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

Let  $x_i = a$  and  $x_{i+1} = x$ 

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \cdots$$

Substituting for convenience  $\Delta x = x_{i+1} - x_i$ 

$$f(\mathbf{x}_{i+1}) = f(\mathbf{x}_i) + f'(\mathbf{x}_i)(\Delta x) + \frac{f''(\mathbf{x}_i)}{2!}(\Delta x)^2 + \cdots$$

- 4 同 ト - 4 目 ト

Forward Difference Approximation Backward Difference Approximation **Taylor Series** Central Divided Difference

# Deriving Forward Difference Approximation (2)

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \cdots$$

$$f(\mathbf{x}_{i+1}) - f(\mathbf{x}_i) - \frac{f''(\mathbf{x}_i)}{2!} (\Delta \mathbf{x})^2 - \dots = f'(\mathbf{x}_i) (\Delta \mathbf{x})$$

$$\frac{f(\mathbf{x}_{i+1})-f(\mathbf{x}_i)}{\Delta x}-\frac{f''(\mathbf{x}_i)}{2!}(\Delta x)-\cdots=f'(\mathbf{x}_i)$$

$$\frac{f(\mathbf{x}_{i+1})-f(\mathbf{x}_i)}{\Delta x}+O(\Delta x)=f'(\mathbf{x}_i)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Forward Difference Approximation Backward Difference Approximation **Taylor Series** Central Divided Difference

Deriving Forward Difference Approximation (3)

$$f'(\mathbf{x}_i) = \frac{f(\mathbf{x}_{i+1}) - f(\mathbf{x}_i)}{\Delta x} + O(\Delta x)$$

the  $O(\Delta x)$  term shows that

the error in the approximation is of the order of  $\Delta x$ 

• for forward difference approximatin

 $x_i = a, \quad x_{i+1} = x, \quad \Delta x = x_{i+1} - x_i$ 

• for forward difference approximatin

 $x_i = a$ ,  $x_{i-1} = x$ ,  $\Delta x = x_i - x_{i-1}$ 

both forward and backward divided difference approximation of the first derivative are accurate on the order of  $O(\Delta x)$ 

to get better approximations? another method to approximate the first derivative is called the Control divided differentiation of Continuous Functions

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Deriving Backward Difference Approximation (1)

A Taylor expansion approximate f(x), using  $f(a), f'(a), f''(a), \cdots$ ,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

Let  $x_i = a$  and  $x_{i-1} = x$ 

$$f(x_{i-1}) = f(x_i) + f'(x_i)(x_{i-1} - x_i) + \frac{f''(x_i)}{2!}(x_{i-1} - x_i)^2 + \cdots$$

Substituting for convenience  $\Delta x = x_i - x_{i-1}$ 

$$f(\mathbf{x}_{i-1}) = f(\mathbf{x}_i) - f'(\mathbf{x}_i)(\Delta x) + \frac{f''(\mathbf{x}_i)}{2!}(\Delta x)^2 - \cdots$$

伺下 イヨト イヨト

Forward Difference Approximation Backward Difference Approximation **Taylor Series** Central Divided Difference

# Deriving Forward Difference Approximation (2)

$$f(x_{i-1}) = f(x_i) - f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 - \cdots$$

$$f'(\mathbf{x}_i)(\Delta x) = f(\mathbf{x}_i) - f(\mathbf{x}_{i-1}) + \frac{f''(\mathbf{x}_i)}{2!}(\Delta x)^2 - \cdots$$

$$f'(\mathbf{x}_i) = \frac{f(\mathbf{x}_i) - f(\mathbf{x}_{i-1})}{\Delta x} + \frac{f''(\mathbf{x}_i)}{2!}(\Delta x) - \cdots$$

=

$$f'(\mathbf{x}_i) = \frac{f(\mathbf{x}_i) - f(\mathbf{x}_{i-1})}{\Delta x} + O(\Delta x)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Forward Difference Approximation Backward Difference Approximation **Taylor Series** Central Divided Difference

# Deriving Central Divide Approximation (1)

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

Let  $x_i = a$  and  $x_{i+1} = x$ , and substitute  $\Delta x = x_{i+1} - x_i$ 

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \cdots$$

Let  $x_i = a$  and  $x_{i-1} = x$ , and substitute  $\Delta x = x_i - x_{i-1}$ 

$$f(x_{i-1}) = f(x_i) + f'(x_i)(x_{i-1} - x_i) + \frac{f''(x_i)}{2!}(x_{i-1} - x_i)^2 + \cdots$$

- 母 ト - ヨ ト - ヨ ト

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

## Deriving Central Divide Approximation

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \frac{f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$
  
$$f(x_{i-1}) = f(x_i) - f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 - \frac{f^{(3)}(x_i)}{3!}(\Delta x)^3 \cdots$$

subtracting eq(2) from eq(1)

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)(\Delta x) + \frac{2f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$
  

$$2f'(x_i)(\Delta x) = f(x_{i+1}) - f(x_{i-1}) - \frac{2f^{(3)}(x_i)}{3!}(\Delta x)^3 - \cdots$$
  

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2(\Delta x)} - \frac{f^{(3)}(x_i)}{3!}(\Delta x)^2 - \cdots$$
  

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O((\Delta x)^2)$$

伺 ト イヨ ト イヨト

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Outline

## 1 Approximations of a first derivative

- Forward Difference Approximation
- Backward Difference Approximation
- Taylor Series
- Central Divided Difference

< ∃ >

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

# Central Divided Approximation

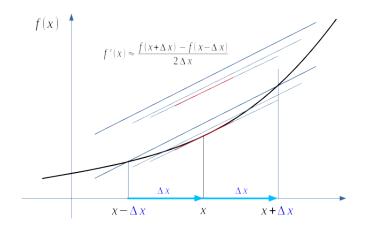



Figure: central difference approximation

Young W Lim Differentiation of Continuous Functions

< ロ > < 同 > < 三 > < 三

Forward Difference Approximation Backward Difference Approximation Taylor Series Central Divided Difference

## Tangent Lines

- as h→0, Q→P and the secant line → the tangent line
- the slope of the tangent line

$$m_{tangent} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a}$$
$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

A 10

→ Ξ →

| Approximations of a first derivative | Forward Difference Approximation<br>Backward Difference Approximation<br>Taylor Series<br>Central Divided Difference |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                      |                                                                                                                      |

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

| Approximations of a first derivative | Forward Difference Approximation<br>Backward Difference Approximation<br>Taylor Series<br>Central Divided Difference |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                      |                                                                                                                      |

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ