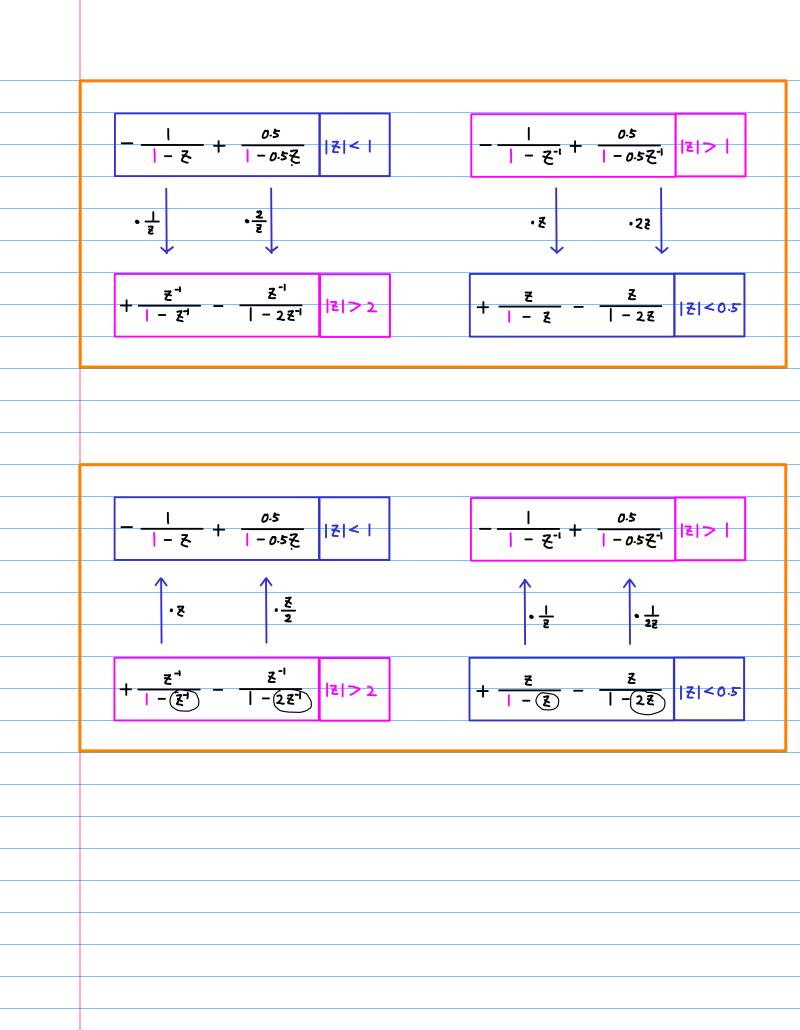

Laurent Series and z-Transform
- Geometric Series
 Double Pole Properties B
 20190227 Wed
Copyright (c) 2016 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

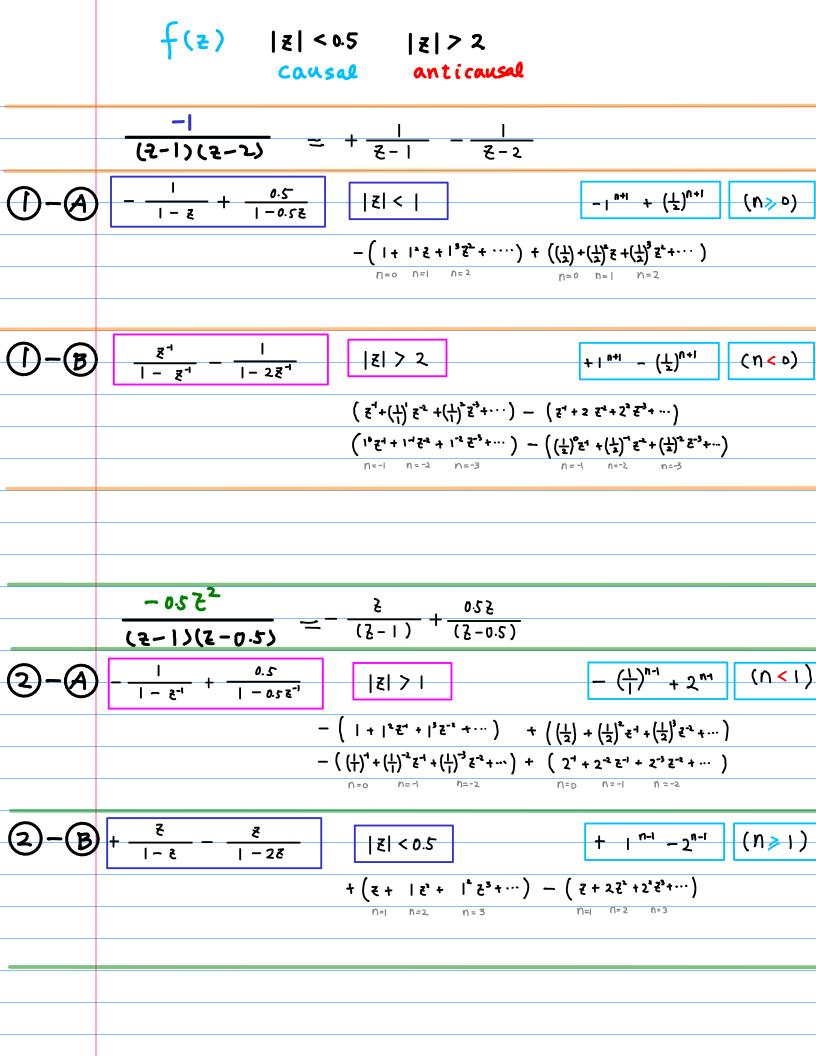


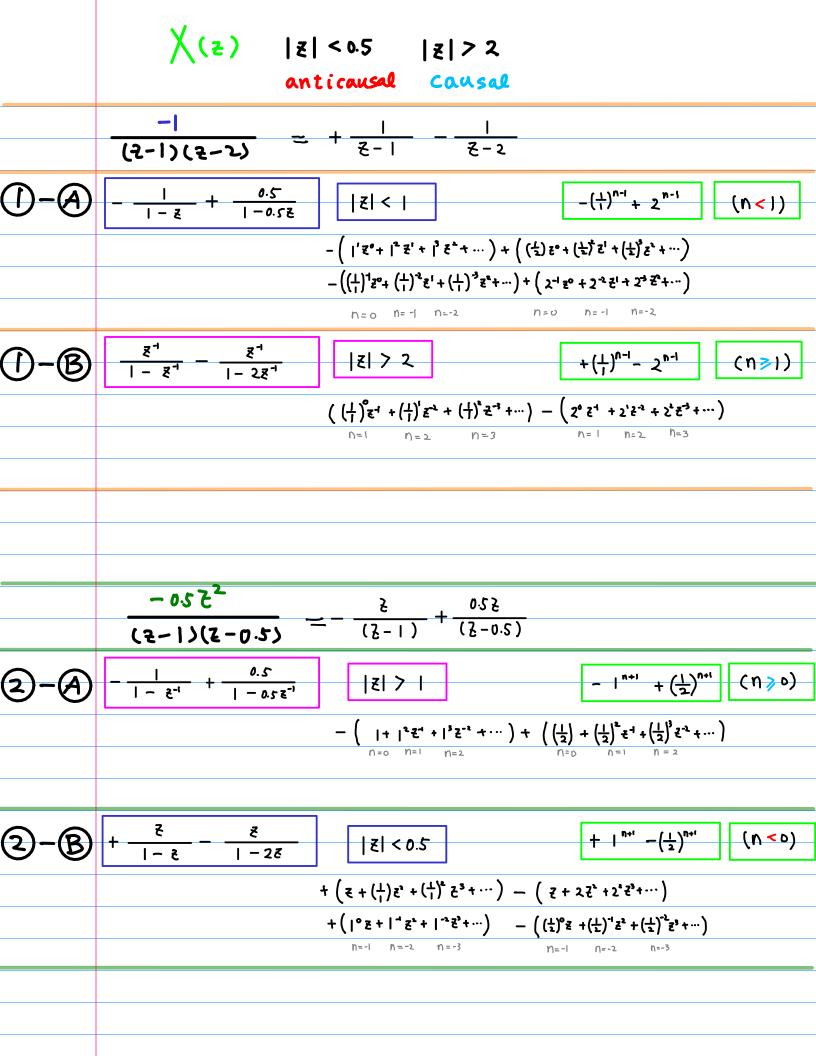
Causal seguence an & Xn

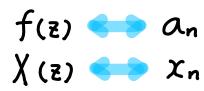
 $-\frac{1}{1-z} + \frac{0.5}{1-0.5z} z < 1$	- <u> </u> - <u>Z⁻¹</u> + <u>0.5</u> - <u>Z⁻¹</u> + <u>1</u> -0.5Z ⁻¹
 causal fi(z) =	Causal Y, (Z) =
-[+ ² z'+ ³ z ² +···] - ^{MI}	-['Z°+ 'Z ⁻¹ + ³ Z ⁻² +] - ⁿ⁺¹
 $+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}\xi'+\left(\frac{1}{2}\right)^{3}\xi^{2}+\cdots\right]+\left(\frac{1}{2}\right)^{n+1}$	$+\left[\left(\frac{1}{2}\right)^{1}\overline{z}^{\circ}+\left(\frac{1}{2}\right)^{2}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{3}\overline{z}^{-1}+\cdots\right]+\left(\frac{1}{2}\right)^{n+1}$
 0 1 2	0 1 2
$+\frac{z^{-1}}{ -z^{-1} } - \frac{z^{-1}}{ -2z^{-1} } z > 2$	$+\frac{z}{ -z }-\frac{z}{ -2z } z <0.5$
' - Z ¹ - 2Z ¹ - 1 - 2Z ¹	- Z - ZZ Z - US
causal X2(Z)	causal g. (Z)
$+\left[\left(\frac{1}{2}\right)^{n}\overline{z}^{n}+\left(\frac{1}{2}\right)^{n}\overline{z}^{-n}+\left(\frac{1}{2}\right)^{n}\overline{z}^{-n}+\cdots\right]+\left(\frac{1}{2}\right)^{n-1}$	+ $[(+)^{n}z' + (+)'z^{n} + (+)^{n}z^{n} + \cdots] + (+)^{n-1}$
$-\left[2^{\circ} \overline{z}^{1} + 2^{1} \overline{z}^{-2} + 2^{2} \overline{z}^{-3} + \cdots\right] - 2^{n-1}$	$-\left[2^{0}z'+2'z^{2}+2^{2}z^{3}+\cdots\right] -2^{n}$
	1 - 5

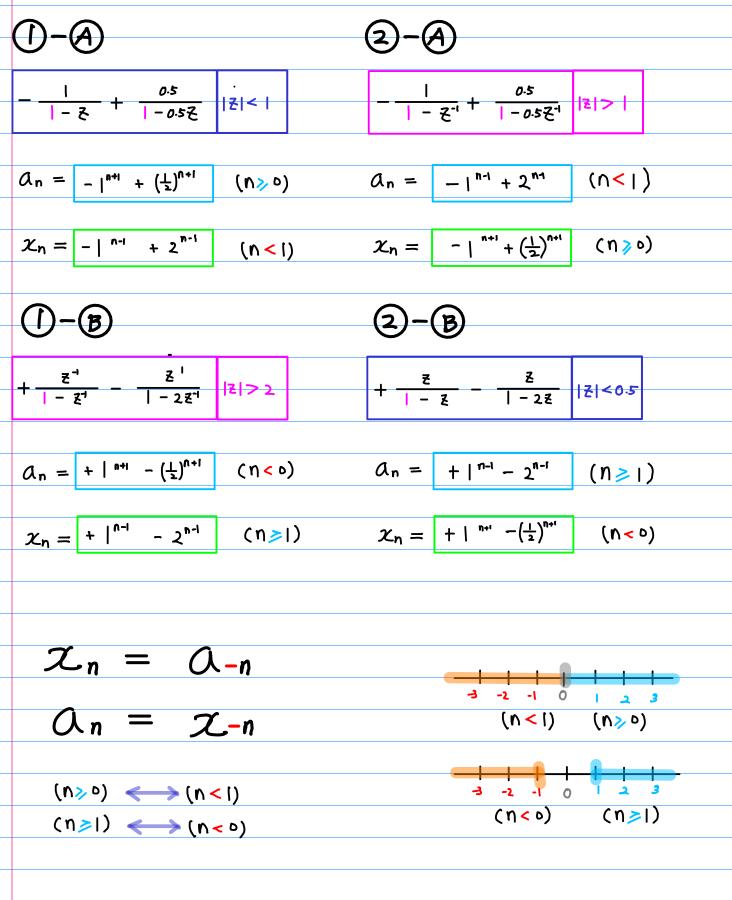
	Anti-causal seguence c	$\lambda_n \mathcal{F} \chi_n$
$2 = \left(\frac{1}{2}\right)^{-1}$ $\left(\frac{1}{2}\right) = 2^{-1}$	$ \frac{ }{ -\xi } + \frac{0.5}{ -0.5\xi } \xi < $ anti-causal $\chi_1(\xi)$ $ -\left[((\frac{1}{1})^{-1} + (\frac{1}{1})^{-2}\xi^1 + (\frac{1}{1})^{-3}\xi^{2} + \cdots\right] - (\frac{1}{1})^{n-1} \\ + \left[2^{-1} + 2^{-2}\xi^1 + 2^{-3}\xi^{2} + \cdots\right] + 2^{n-1} \\ 0 - -2 $	$ \frac{-\frac{1}{1-z^{-1}} + \frac{0.5}{1-0.5z^{-1}}}{-\frac{1}{2}} z > 1 $ anti-causal $g_1(z)$ $-\left[\left(\frac{1}{1}\right)^{-\frac{1}{2}}e^{+} + \left(\frac{1}{1}\right)^{-\frac{3}{2}}e^{-\frac{1}{2}} + \cdots\right] - \left(\frac{1}{1}\right)^{\frac{1}{2}-1}$ $+\left[2^{-\frac{1}{2}}e^{+} + 2^{-\frac{1}{2}}e^{-\frac{1}{2}} + 2^{-\frac{3}{2}}e^{-\frac{1}{2}} + \cdots\right] + 2^{\frac{n}{2}} $
	$\frac{z^{-1}}{ -z^{-1} } - \frac{z^{-1}}{ -z^{-1} } z > 2$ anti-causal $f_1(z)$	$\frac{z}{1-z} = \frac{z}{1-2z} z < 0.5$ anti-causal $Y_2(z)$
$2 = \left(\frac{1}{2}\right)^{-1}$ $\left(\frac{1}{2}\right) = 2^{-1}$	$+ \left[1^{\circ} \overline{z}^{1} + 1^{-1} \overline{z}^{-2} + 1^{-2} \overline{z}^{-3} + \cdots \right] + 1^{n+1}$ $- \left[\left(\frac{1}{2} \right)^{0} \overline{z}^{-4} + \left(\frac{1}{2} \right)^{-1} \overline{z}^{-2} + \left(\frac{1}{2} \right)^{-2} \overline{z}^{-3} + \cdots \right] - \left(\frac{1}{2} \right)^{n+1}$ $- 1 - 2 - 3$	$+\left[1^{0}Z^{1}+1^{4}Z^{2}+1^{2}Z^{3}+\cdots\right] + 1^{n+1}$ $-\left[\left(\frac{1}{2}\right)^{0}Z^{1}+\left(\frac{1}{2}\right)^{-1}Z^{2}+\left(\frac{1}{2}\right)^{-2}Z^{3}+\cdots\right] - \left(\frac{1}{2}\right)^{n+1}$ $-1 -2 -3$

$-\frac{1}{1-z} + \frac{0.5}{1-0.5z} z < 1$	$-\frac{ }{ -z^{-1}} + \frac{0.5}{ -0.5z^{-1}} z > $
causal f ₁ (z) =	anti-causal g. (Z)
-[+ ² z ¹ + ³ z ² +···] - ^{MI}	$-\left[\left(\frac{1}{1}\right)^{-1}\xi^{\circ}+\left(\frac{1}{1}\right)^{-2}\xi^{-1}+\left(\frac{1}{1}\right)^{-2}\xi^{-2}+\cdots\right] -\left(\frac{1}{1}\right)^{2q-1}$
$+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}\xi'+\left(\frac{1}{2}\right)^{3}\xi^{2}+\cdots\right]+\left(\frac{1}{2}\right)^{n+1}$	+ $\left[2^{n}z^{n}+2^{n}z^{1}+2^{n}z^{n}+\cdots\right]+2^{n-1}$
0 1 2	0 - -2
anti-causal X ₁ (Z)	causal Y, (Z) =
$-\left[\left(\frac{1}{\tau}\right)_{-1}+\left(\frac{1}{\tau}\right)_{-r}\mathfrak{S}_{1}+\left(\frac{1}{\tau}\right)_{-r}\mathfrak{S}_{r}\leftarrow\cdots\right]-\left(\frac{1}{\tau}\right)_{\mu-\ell}$	-['Z°+ `Z ⁻¹ + ³ Z ⁻² + ···] _ ⁿ⁺¹
+[21+222+232+] +2"1	$+\left[\left(\frac{1}{2}\right)^{1}\xi^{\bullet}+\left(\frac{1}{2}\right)^{2}\xi^{-1}+\left(\frac{1}{2}\right)^{3}\xi^{-1}+\cdots\right]+\left(\frac{1}{2}\right)^{N+1}$
0 - -2	0 1 2
$\frac{z^{-1}}{ -z^{-1} } - \frac{z^{-1}}{ -z^{-1} } z > 2$. 2 2
$+$ $ z^{-}$ $ -$	$+\frac{z}{1-z}-\frac{z}{1-zz}$ $ z <0.5$
anti-causal f ₂ (Z)	causal g, (Z)
+[° ɛ̃'+ ⁻¹ ɛ̄ ⁻³ + ···] + ⁿ⁺	$+\left[\left(\frac{1}{2}\right)^{0}z^{1}+\left(\frac{1}{2}\right)^{1}z^{2}+\left(\frac{1}{2}\right)^{2}z^{3}+\cdots\right]+\left(\frac{1}{2}\right)^{n-1}$
$-\left[\left(\frac{1}{2}\right)^{\circ}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]-\left(\frac{1}{2}\right)^{1+1}$	-[2ºᠽ' + 2' テᠯ+ 2 ⁺ テ ⁺ + ···] -2 ⁿ¹
-1 -2 -3	2 3
causal X2(E)	anti-causal Yz(Z)
$+\left[\left(\frac{1}{T}\right)_{a_1} \underbrace{\xi_1} + \left(\frac{1}{T}\right)_i \underbrace{\xi_2} + \left(\frac{1}{T}\right)_j \underbrace{\xi_2} + \cdots\right] + \left(\frac{1}{T}\right)_{u-1}$	+[1°Z1 + 14Z2 + 12Z3 + ···] + 18+1
$-\left[2^{\circ} t^{-1} + 2^{1} t^{-2} + 2^{2} t^{-3} + \cdots\right] - 2^{n-1}$	$-\left[\left(\frac{1}{2}\right)^{0} \overline{z}^{1} + \left(\frac{1}{2}\right)^{-1} \overline{z}^{2} + \left(\frac{1}{2}\right)^{-2} \overline{z}^{3} + \cdots\right] - \left(\frac{1}{2}\right)^{n+1}$
\ 2 3	-1 -2 -3

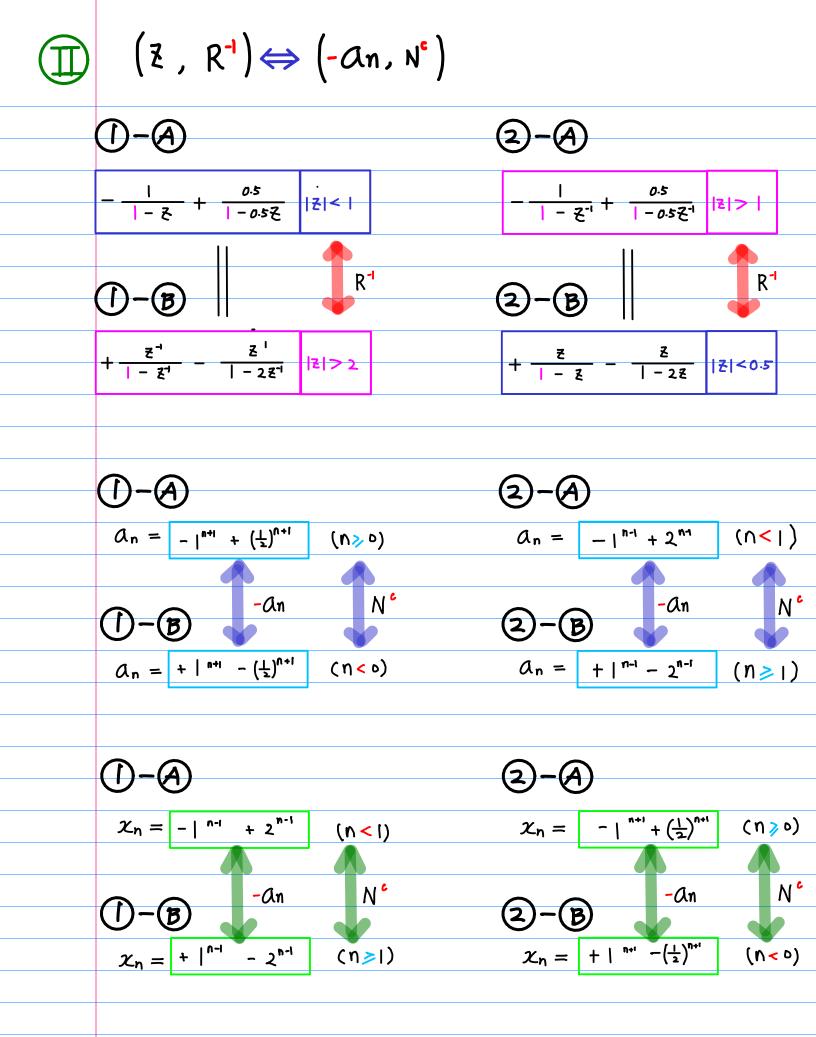

	0.5			0.5		
- 5	+ - 0.5 -	2 <	- Z"	- 0.5Z ⁻¹		
f(z) =-	<u>[+ [°]₹+ [°]₹</u>	·+···]	$f(z) = -\left[\left(\frac{1}{2}\right)\right]$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	·) ⁵ z ⁻¹ + ···]	
	[(<u>+</u>)+(<u>+</u>) [*] z +(<u>+</u>			'E° + 2 ⁻² E ⁻¹ + 2 ⁻³		
Qn =	$- ^{n+i} + \left(\frac{1}{2}\right)^{n+i}$	(n≥0)	$ \Delta_n = -\left(\frac{1}{n}\right) $	·) ⁿ⁻¹ + 2 ⁿ⁻¹	(n<))	
X (Z) = -	$(\frac{1}{1})^{-1} + (\frac{1}{1})^{-2} \overline{z}^{1} + (-\frac{1}{1})^{-2} \overline{z}^{1}$	<u> </u>)-³z*+ ···]	× (٤) =-[۱٬	² + اً ² + ا ³	· · · · ·]	
+ [21 + 22 2 + 2	, ε, +]	+[(1	$\left(\frac{1}{2}\right)^{1} z^{0} + \left(\frac{1}{2}\right)^{2} z^{-1} + \left(\frac{1}{2}\right)^{2} z^{-$	<u></u>	
$z_n =$	$-\left(\frac{1}{1}\right)^{n-1}+2^{n-1}$	(n<[)	$\chi_n = -1$	$n+1$ $+$ $\left(\frac{1}{2}\right)^{n+1}$	(n >0)	

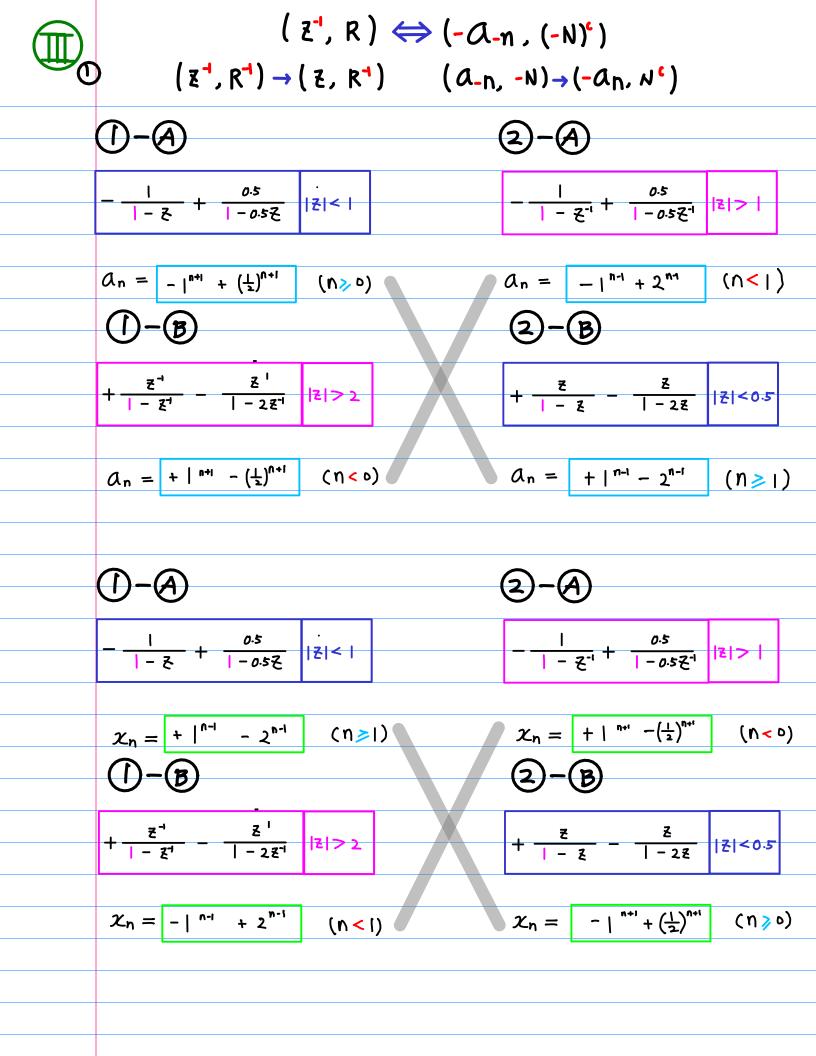

		$+ \left[\left(\frac{1}{2} \right)^{2} + \left(\frac{1}{2} \right)^{2} + \left(\frac{1}{2} \right)^{2} + \left(\frac{1}{2} \right)^{2} \right]$
$\chi_n = -\left(\frac{1}{1}\right)^{n-1} + 2^{n-1}$	(n< [)	$\chi_{n} = - \left(\frac{n+1}{2} \right)^{n+1} (n \ge 0)$

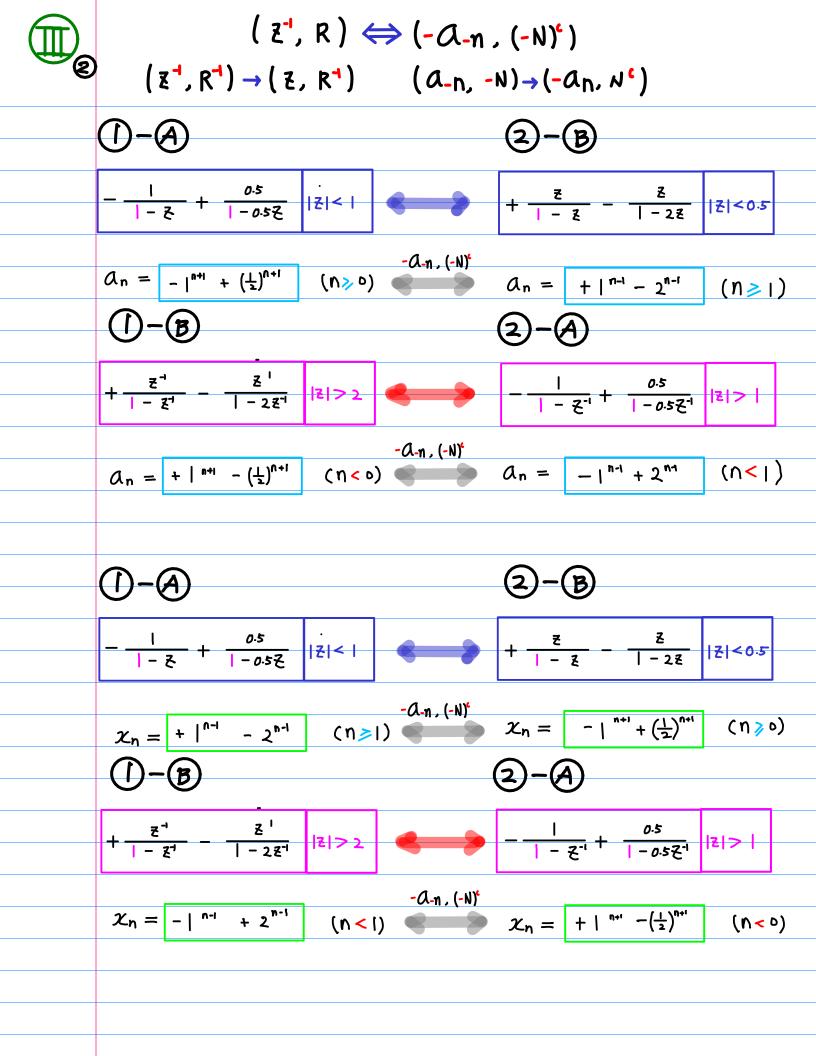

$+\frac{z^{-1}}{ -z^{-1} } - \frac{z^{-1}}{ -z^{-1} } z > 2$	$+\frac{z}{1-z}-\frac{z}{1-2z} z <0.5$
$f(z) = + \left[e^{z^{1}} + e^{-z^{2}} + e^{-z^{3}} + \cdots \right]$	$f(z) = + \left[\left(\frac{1}{1} \right)^{0} z^{1} + \left(\frac{1}{1} \right)^{1} z^{2} + \left(\frac{1}{1} \right)^{2} z^{3} + \cdots \right]$
$-\left[\left(\frac{1}{2}\right)_{\overline{z}}^{o}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	$f(z) = + \left[\left(\frac{1}{1} \right)^{0} z' + \left(\frac{1}{1} \right)^{1} z^{2} + \left(\frac{1}{1} \right)^{2} \overline{z}^{3} + \cdots \right] \\ - \left[2^{0} \overline{z}' + 2^{1} \overline{z}^{2} + 2^{2} \overline{z}^{3} + \cdots \right]$
$a_n = + 1^{n+1} - \left(\frac{1}{2}\right)^{n+1} (n < 0)$	$\Delta_n = \pm \left(\frac{1}{1}\right)^{n-1} - 2^{n-1} (n \ge 1)$

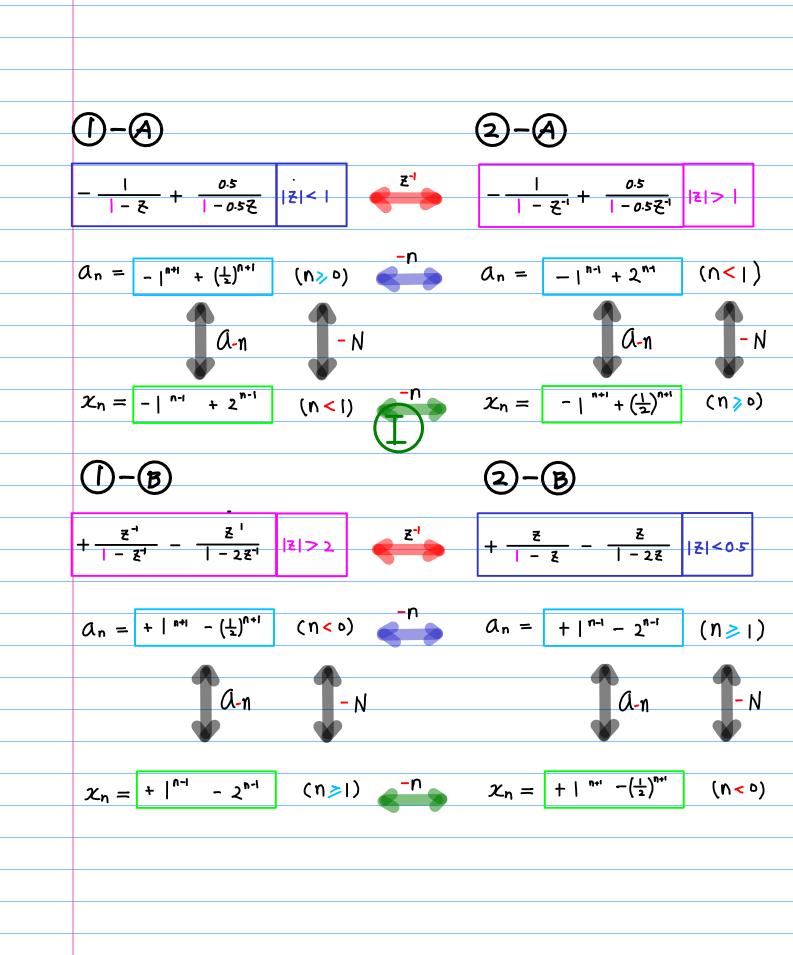

$$\begin{array}{c} X(z) = + \left[\left(\frac{1}{1} \right)^{n} \overline{z}^{1} + \left(\frac{1}{1} \right)^{n} \overline{z}^{n} + \cdots \right] \\ - \left[2^{n} \overline{z}^{n} + 2^{n} \overline{z}^{n} + 2^{n} \overline{z}^{n} + \cdots \right] \\ \hline \\ x_{n} = + \left(\frac{1}{1} \right)^{n-1} - 2^{n-1} & (n \ge 1) \end{array} \qquad \begin{array}{c} X(z) = + \left[1^{n} \overline{z}^{1} + 1^{n} \overline{z}^{n} + 1^{n-1} \overline{z}^{n} + \cdots \right] \\ - \left[\left(\frac{1}{2} \right)^{n} \overline{z}^{1} + \left(\frac{1}{2} \right)^{-\frac{1}{2}n} + \left(\frac{1}{2} \right)^{-\frac{1}{2}n} + \cdots \right] \\ \hline \\ x_{n} = + 1^{n+1} - \left(\frac{1}{2} \right)^{n+1} & (n < 0) \end{array}$$

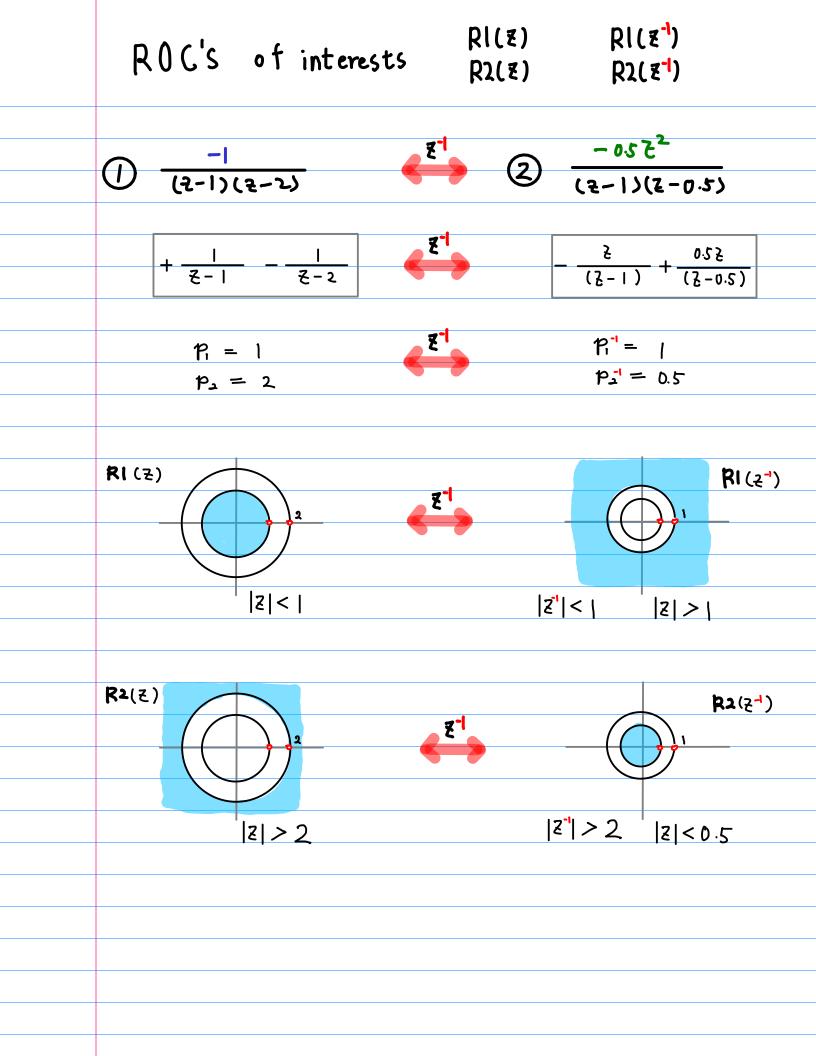
() -A	Q-A	
()-B	Q-B	

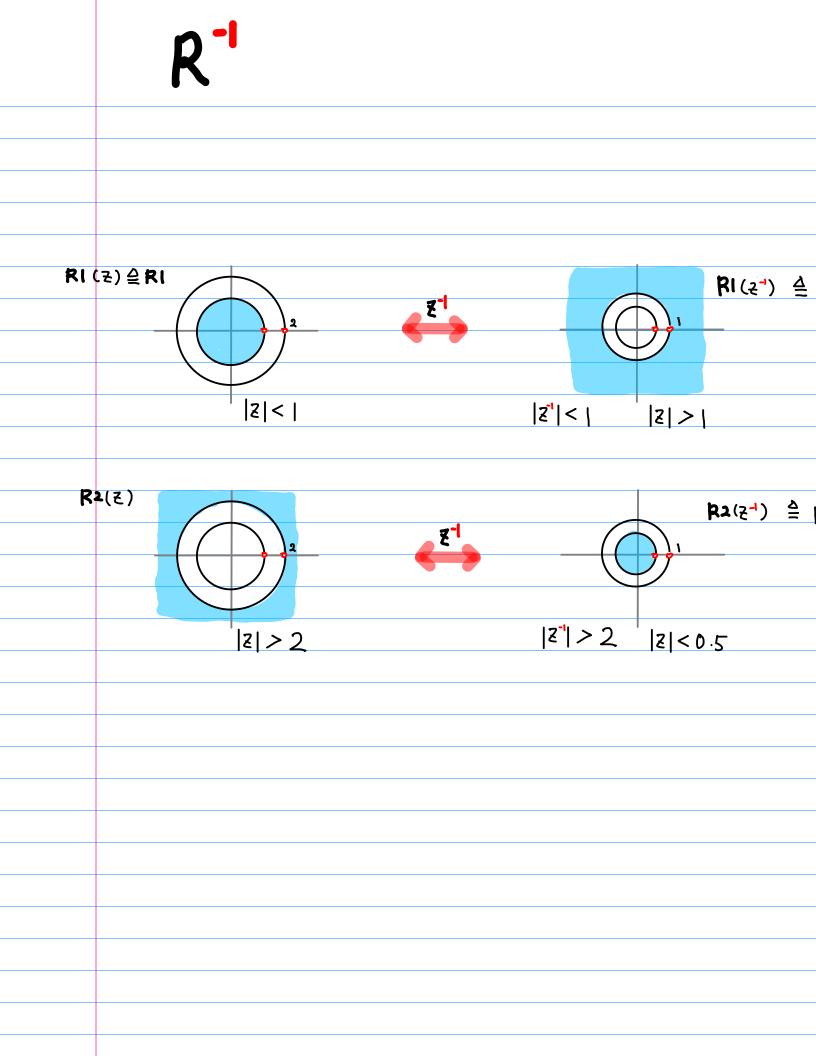


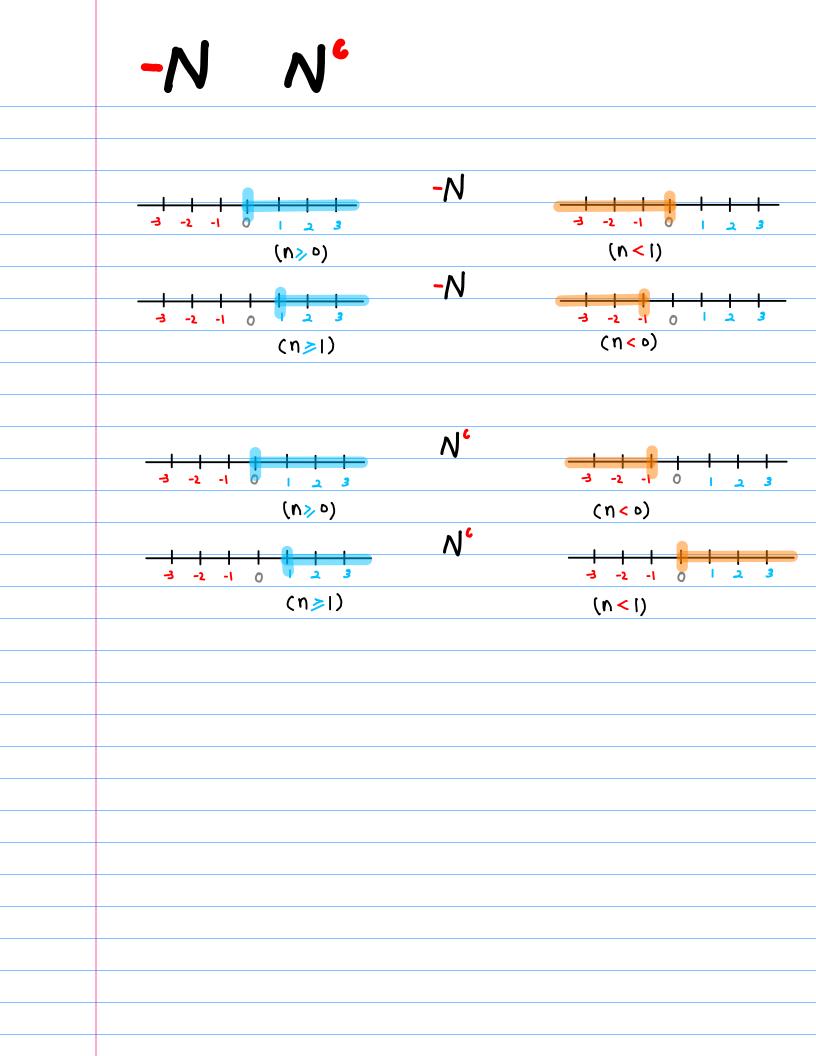





 $(Z^{-1}, R^{-1}) \Leftrightarrow (A - n, -N)$ I) (Z, R⁻¹) ⇔ (-an, N^e) $(\underline{z}^{-1}, R) \Leftrightarrow (-\alpha_{-n}, (-N)^{c}) = (-\alpha_{-n}, -(N^{c}))$ I ſ $(a_n, N) \Leftrightarrow (X_{-n}, -N)$




 $(a_n, N) \Leftrightarrow (X_{-n}, -N)$



 $\boxed{\mathbf{I}} \quad (\mathbf{Z}^{-1}, \mathbf{R}^{-1}) \Leftrightarrow (\mathbf{A} - \mathbf{n}, -\mathbf{N})$ $\boxed{1} \quad (\texttt{Z}, \texttt{R}^{-1}) \Leftrightarrow (-\texttt{An}, \texttt{N}^{\circ})$ $(\underline{z}^{-1}, R) \Leftrightarrow (-\alpha_{-n}, (-N)^{c}) = (-\alpha_{-n}, -(N^{c}))$ I (Π) Ē (I $(a_n, N) \Leftrightarrow (X_{-n}, -N)$

RI(E) RI(E ¹) R2(E) R2(E ¹) R ¹ -N, N ⁶	
R2(E) R2(E ⁻¹)	
R ⁻¹	
R ⁻ N, N ^e	

$$(\overline{z}, R) \Leftrightarrow (\overline{\alpha}n, N)$$

$$f(\overline{z}) \quad Roc(\overline{z}) \iff \overline{\alpha}n \quad RNG(n)$$

$$121
$$(\overline{z}^{-1}, R^{-1}) \Leftrightarrow (\overline{\alpha}-n, -N)$$

$$f(\overline{z}^{-1}) \quad Roc(\overline{z}^{-1}) \iff \overline{\alpha}-n \quad RNG(-n)$$

$$121 > \frac{1}{p} \qquad n < 1$$

$$(\overline{z}, R^{-1}) \Leftrightarrow (-\overline{\alpha}n, N^{c})$$

$$f(\overline{z}) \quad Roc(\overline{z}^{-1}) \iff -\overline{\alpha}n \quad RNG(n)$$

$$121 > \frac{1}{p} \qquad n < 0$$

$$(\overline{z}^{-1}, R) \Leftrightarrow (-\overline{\alpha}-n, (-N)^{c}) = (-\overline{\alpha}-n, -(N^{c}))$$

$$f(\overline{z}^{-1}) \quad Roc(\overline{z}) \iff -\overline{\alpha}-n \quad \ll RNG(n) \gg n \ge 1$$

$$f(\overline{z}) \quad Roc(\overline{z}) \iff -\overline{\alpha}-n \quad \ll RNG(n) \gg n \ge 1$$

$$(\overline{\alpha}n, N) \iff (X_{-n}, -N)$$

$$X(\overline{z}) \quad Roc(\overline{z}) \iff \overline{\alpha}-n \quad RNG(-n)$$

$$1\overline{z}$$$$

 \equiv (I)+(I Ш (I)+(I)- A-n (\mathbb{I}) f(z')« RNG(n) » RO((z) $\langle - \rangle$ n>1 |z| < pAn f(Z) RNG(n) RO((z))n≥ 0 |z| < p $RO((\vec{z}))$ $f(\mathcal{E}')$ A-n RNG(-n) $\langle - \rangle$ (I)1717 n < 1 - A n f(Z) R0((z') RNG(n) (\mathbb{I}) 1717 n < 0 f(z')- A-n RO((z))RNG(-n) |z| < pリシノ $(Z^{-1}, R^{-1}) \Leftrightarrow (\Omega - n, -N)$ $(\mathbb{Z}, \mathbb{R}^{-1}) \Leftrightarrow (-\operatorname{An}, \mathbb{N}^{c})$ $(z^{-1}, R) \Leftrightarrow (-A_{-n}, (-N)^{c}) = (-A_{-n}, -(N^{c}))$

Compare I with I $RO((z) f(z) \iff An$ RNG(n) n≥ 0 |z| < p $(Z^{-1}, R^{-1}) \Leftrightarrow (A - n, -N)$ (\mathbf{I}) ROC(Z) <→ A-n f(z')RNG(-n) 171 **7** n < 1 $(a_n, N) \iff (X_{-n}, -N)$ $(\chi_n, N) \iff (a_{-n}, -N)$ $RO((z) \iff A_n$ RNG(-n) X(Z) n < 1 |z| < pSymmetrical

 $(\underline{Z}^{-1}, R^{-1}) \Leftrightarrow (A-n, -N)$

$-\frac{1}{1-\xi} + \frac{0.5}{1-0.5\xi} \xi < 1$	$-\frac{ }{ -z^{-1}} + \frac{0.5}{ -0.5z^{-1}} z > $
$f(\boldsymbol{\xi}) = -\left(\boldsymbol{\xi} ^{2}\boldsymbol{\xi} + ^{3}\boldsymbol{\xi}^{2} + \cdots\right)$	$f(z) = -\left[\left(\frac{1}{1}\right)^{\frac{1}{2}} + \left(\frac{1}{1}\right)^{\frac{1}{2}-1} + \left(\frac{1}{1}\right)^{\frac{1}{2}} + \cdots\right]$
$+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2} \not\in +\left(\frac{1}{2}\right)^{3} \not\in^{2} + \cdots\right]$	+ [2 ⁻¹ z ⁻¹ t ⁻¹ + 2 ⁻³ z ⁻¹ + ···]
$(\lambda_n = -i^{n+1} + \left(\frac{1}{2}\right)^{n+1} (n \ge 0)$	$O_n = -\left(\frac{1}{l}\right)^{n-1} + 2^{n-1} (n < 1)$

$+\frac{z^{-1}}{ -z^{-1} } - \frac{z^{-1}}{ -2z^{-1} } z > 2$	$+\frac{z}{ -z }-\frac{z}{ -2z } \frac{ z <0.5}{ z <0.5}$		
$f(z) = + \left[^{\circ} z^{1} + ^{-1} z^{2} + ^{-2} z^{-3} + \cdots \right]$	$f(z) = + \left[\left(\frac{1}{1} \right)^{0} z^{1} + \left(\frac{1}{1} \right)^{1} z^{2} + \left(\frac{1}{1} \right)^{2} z^{3} + \cdots \right] \\ - \left[2^{0} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots \right]$		
$-\left[\left(\frac{1}{2}\right)^{0}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	$-\left[2^{0}\overline{z}'+2^{1}\overline{z}^{2}+2^{2}\overline{z}^{3}+\cdots\right]$		
$\mathcal{A}_{n} = + ^{n+1} - \left(\frac{1}{2}\right)^{n+1} (n < 0)$	$\Delta_n = \pm \left(\frac{1}{1}\right)^{n-1} - 2^{n-1} (n \ge 1)$		

$f(z) = \frac{\alpha}{1 - \alpha z} = \sum_{n=0}^{\infty} \alpha^{n+1} z^n$	$f(z^{-1}) = \frac{a}{1 - a z^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$
$\sum_{n=0}^{\infty} \alpha^{n+1} Z^n \qquad Z < 0$	$\sum_{n=0}^{\infty} \overline{a}^{n+1} \overline{z}^n \qquad \overline{z} > \overline{A}^{-1}$
Ω ⁿ⁺¹ Π≥Ο	$\left(\frac{1}{a}\right)^{n-1}$ $n < 1$

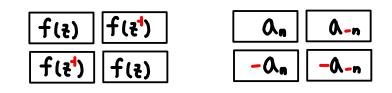
$f(z^{-1}) = \frac{-z^{-1}}{1-\alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1}$		$z^{n} z = -\sum_{n=0}^{\infty} Q^{-n} Z^{n+1}$
$-\sum_{n=1}^{\infty} a^{n+1} Z^n \qquad \mathcal{Z} > Q^{-1}$	-> Q ⁻ⁿ⁺¹ Z	n 5 < Q
$-a^{n+i} n < 0$	$-\left(\frac{1}{\alpha}\right)^{n-1}$	ก≽∣

 $(\mathbb{I}, \mathbb{R}^{-1}) \Leftrightarrow (-\operatorname{An}, \mathbb{N}^{c})$

$$\begin{aligned} -\frac{1}{1-\xi} + \frac{\partial S}{1-\partial S\xi} & |\xi| < 1 & -\frac{1}{1-\xi^{-1}} + \frac{\partial S}{1-\partial S\xi^{-1}} & |\xi| > 1 \\ f(\xi) &= -\left[1+1^{+}\xi+1^{+}\xi^{+}+\cdots\right] & f(\xi) &= -\left[(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}(\frac{1}{2})^{+}\xi^{+}(\frac{1}{2})^{+}(\frac{1}$$

 $(z^{-1}, R) \Leftrightarrow (-a_{-n}, (-N)^{c}) = (-a_{-n}, -(N^{c}))$

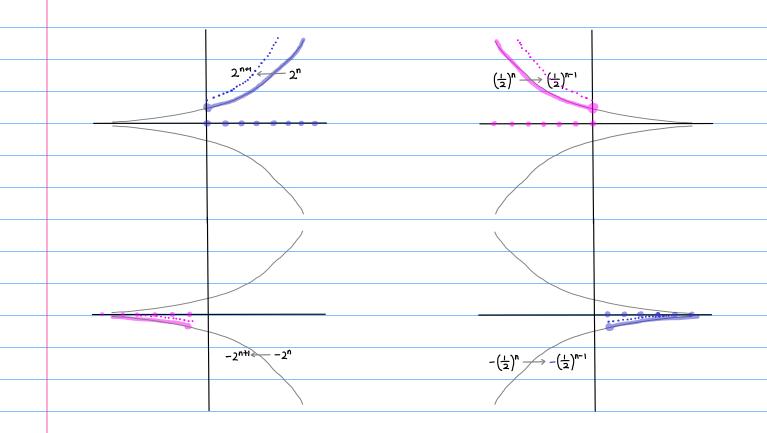
 $(a_n, N) \Leftrightarrow (X_{-n}, -N)$

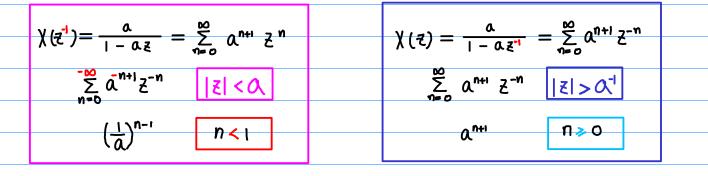

$-\frac{1}{1-z} + \frac{0.5}{1-0.5z} z < 1$	$-\frac{ }{ -z^{-1}} + \frac{0.5}{ -0.5z^{-1}} z > $
$f(\mathcal{E}) = -\left[1 + 1^{3}\mathcal{E} + 1^{3}\mathcal{E}^{*} + \cdots\right]$	$f(z) = -\left[\left(\frac{1}{l}\right)^{\frac{1}{2}} + \left(\frac{1}{l}\right)^{\frac{1}{2}-1} + \left(\frac{1}{l}\right)^{\frac{1}{2}-1} + \cdots\right]$
$+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{3}\xi+\left(\frac{1}{2}\right)^{3}\xi^{2}+\cdots\right]$	+ [2 ⁴ z° + 2 ⁻² z ⁻¹ + 2 ⁻³ z ⁻² + ···]
$(\lambda_n = -i^{n+1} + \left(\frac{i}{\lambda}\right)^{n+1} (n \ge 0)$	$ \Delta_n = -\left(\frac{1}{l}\right)^{n-1} + 2^{n-1} (n < 1) $
$\chi(z) = -\left[\left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} z^{2} + \cdots\right]$	$X(z) = -\left[(z^{\circ} +)^{*} z^{-1} + (z^{\circ} +)^{*} z^{-1} + (z^{\circ} +)^{*} \right]$
+ $[2^{1}+2^{2}z+2^{3}z^{2}+\cdots]$	$+\left[\left(\frac{1}{2}\right)^{l}\xi^{\circ}+\left(\frac{1}{2}\right)^{2}\xi^{-1}+\left(\frac{1}{2}\right)^{3}\xi^{-1}+\cdots\right]$
$\chi_n = -(\frac{1}{1})^{n-1} + 2^{n-1} (n < 1)$	$\chi_n = - ^{n+1} + \left(\frac{1}{2}\right)^{n+1} (n \ge 0)$
$+\frac{z^{-1}}{ -z^{-1} } - \frac{z^{-1}}{ -2z^{-1} } z > 2$	$+\frac{z}{ -z}-\frac{z}{ -2z}$ $ z <0.5$
$f(z) = + \left[e^{z^{1}} + e^{-z^{2}} + e^{-z^{3}} + \cdots \right]$	$f(z) = + \left[\left(\frac{1}{1} \right)^{0} z^{1} + \left(\frac{1}{1} \right)^{1} z^{2} + \left(\frac{1}{1} \right)^{2} z^{3} + \cdots \right]$
$f(Z) = + \left[\left[\left(\frac{1}{2} \right)^{\circ} Z^{-1} + \left(\frac{1}{2} \right)^{-1} Z^{-2} + \left(\frac{1}{2} \right)^{-2} Z^{-3} + \cdots \right] - \left[\left(\frac{1}{2} \right)^{\circ} Z^{-1} + \left(\frac{1}{2} \right)^{-2} Z^{-3} + \cdots \right]$	$f(z) = + \left[\left(\frac{1}{1} \right)^{0} z^{1} + \left(\frac{1}{1} \right)^{1} z^{2} + \left(\frac{1}{1} \right)^{2} z^{3} + \cdots \right] \\ - \left[2^{0} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots \right]$
$f(\mathcal{Z}) = + \left[1^{\circ} \mathcal{Z}^{1} + 1^{-1} \mathcal{Z}^{-1} + 1^{-2} \mathcal{Z}^{-3} + \cdots \right] \\ - \left[\left(\frac{1}{2} \right)^{\circ} \mathcal{Z}^{-1} + \left(\frac{1}{2} \right)^{-1} \mathcal{Z}^{-3} + \cdots \right] \\ \mathcal{A}_{n} = + 1^{n+1} - \left(\frac{1}{2} \right)^{n+1} (n < 0)$	$f(z) = \frac{+\left[\left(\frac{1}{1}\right)^{0} z^{1} + \left(\frac{1}{1}\right)^{1} z^{2} + \left(\frac{1}{1}\right)^{2} z^{3} + \cdots\right]}{-\left[2^{0} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots\right]}$ $\Delta_{n} = +\left(\frac{1}{1}\right)^{n-1} - 2^{n-1} (n \ge 1)$
$-\left[\left(\frac{1}{2}\right)^{\circ}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	-[2ºZ' + 2' Z ² + 2 ⁺ Z ³ + ···]

- [2° E'+ 2' E ⁻² + 2 ² E ⁻³ +…]		$-\left[\left(\frac{1}{2}\right)^{0}\xi^{1}+\left(\frac{1}{2}\right)^{2}\xi^{2}+\left(\frac{1}{2}\right)^{2}\xi^{3}+\cdots\right]$
$\chi_n = + (\frac{1}{2})^{n-1} - 2^{n-1}$	(n≽)	$\mathcal{L}_{n} = \pm 2^{n+i} - \left(\frac{1}{2}\right)^{n+i} (n < b)$

 $\boxed{\mathbb{W}} (a_n, N) \Leftrightarrow (X_{-n}, -N)$

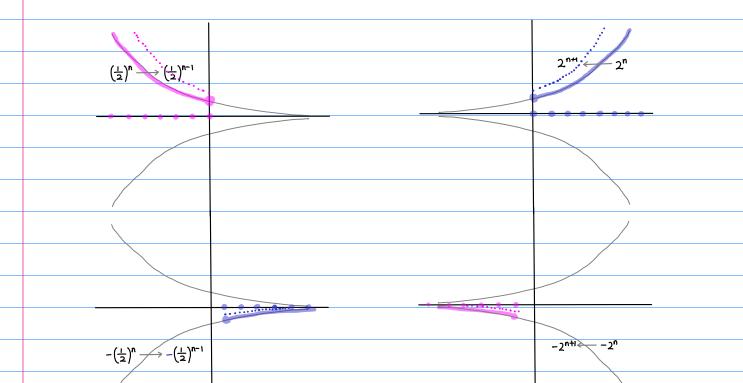
 $f(z^{-1}) = \frac{a}{1 - a z^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$ $f(z) = \frac{\alpha}{1 - \alpha z} = \sum_{n=0}^{\infty} \alpha^{n+1} z^n$ $\sum_{n=0}^{\infty} \alpha^{n+1} Z^n \qquad |\xi| < \alpha$ $\sum_{n=0}^{-10} \bar{Q}^{n+1} Z^n \qquad |Z| > Q^{-1}$ $\left(\frac{1}{a}\right)^{n-i}$ n < i_____Ωⁿ⁺ⁱ Π≥Ο $\chi(z) = \frac{a}{1 - az^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$ $\chi(z^{-1}) = \frac{\alpha}{1 - \alpha z} = \sum_{n=0}^{\infty} \alpha^{n+1} z^{n}$ ^{-∞} aⁿ⁺¹ z⁻ⁿ |z| < 0, $\sum_{n=0}^{\infty} \alpha^{n+1} \mathcal{Z}^{-n} \quad |\mathcal{Z}| > \alpha^{-1}$ **Ωⁿ⁺¹ Π ≥** Ο $\left(\frac{1}{a}\right)^{n-i}$ n < i

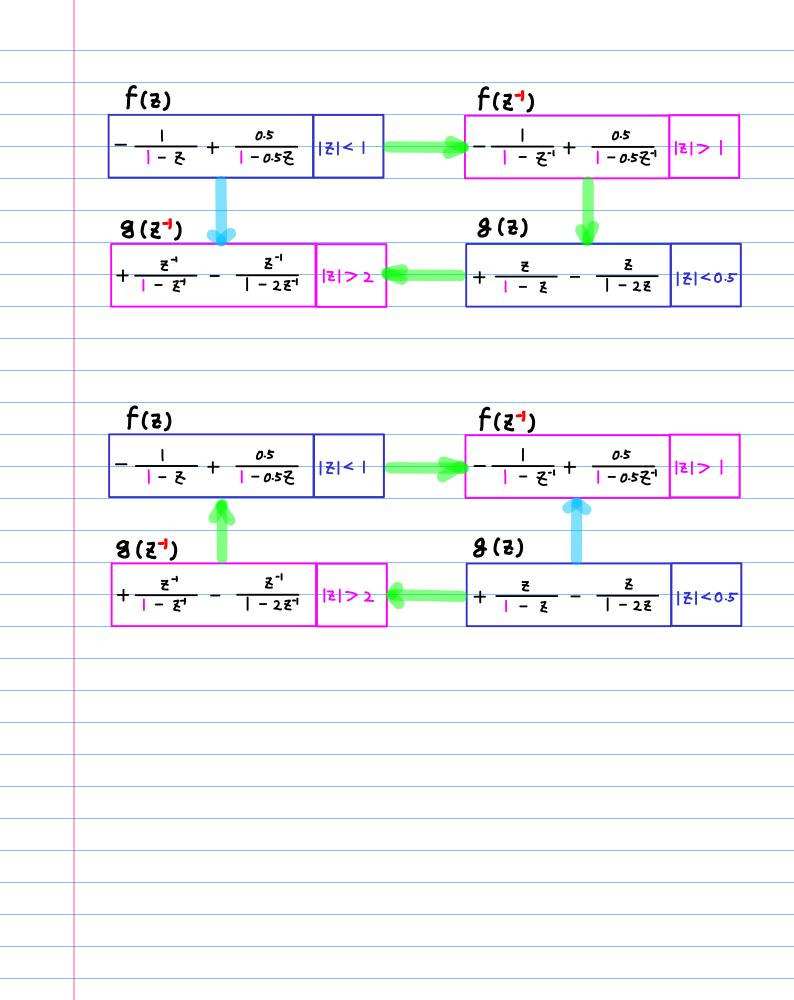

$$\begin{aligned} f(z^{-1}) &= \frac{-z^{-1}}{1 - \alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1} & f(z) &= \frac{-z}{1 - \alpha^{-1}z} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{n+1} \\ -\sum_{n=1}^{-\infty} \alpha^{n+1} z^{n} & |z| > \alpha^{-1} & -\sum_{n=1}^{\infty} \alpha^{-n+1} z^{n} & |z| < \alpha \\ -\alpha^{n+1} & n < 0 & -\left(\frac{1}{\alpha}\right)^{n-1} & n \ge 1 \\ \chi(z^{-1}) &= \frac{-z^{-1}}{1 - \alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1} & \chi(z^{-1}) &= \frac{-z}{1 - \alpha^{-1}z} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{n+1} \\ -\sum_{n=1}^{\infty} \alpha^{-n+1} z^{-n} & |z| > \alpha^{-1} & -\alpha^{n+1} & |z| < \alpha \\ -\left(\frac{1}{\alpha}\right)^{n-1} & n \ge 1 & -\alpha^{n+1} z^{-n} & |z| < \alpha \end{aligned}$$


$f(z) = \frac{a}{1-az} =$	= <u>></u> Q ⁿ⁺¹ Z ⁿ	$f(z^{-1}) = \frac{a}{1 - a z^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$
	¶=0	
Σ Q ⁿ⁺¹ Z ⁿ	z < 0	$\sum_{n=0}^{\infty} \bar{a}^{n+1} \bar{z}^n \qquad \bar{z} > \bar{\alpha}^1$
Qn+i	n ≫ o	$\frac{(\frac{1}{a})^{n-1}}{\left(\frac{1}{a}\right)^{n-1}}$

$f(z^{-1}) = \frac{-z^{-1}}{1-\alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1}$	$f(z) = \frac{-z}{1 - a^{-1}z} = -\sum_{n=0}^{\infty} a^{-n} z^{n+1}$
$-\sum_{n=-1}^{\infty} \alpha^{n+1} Z^n \qquad Z > \alpha^{-1}$	$-\sum_{n=1}^{\infty} \alpha^{-n+1} Z^n \qquad \mathbf{z} < \mathbf{A}$
$-a^{n+1} n < 0$	-(±) ⁿ⁻¹ n≥ 1

			ሊ ^ቍ	a + a ² z ⁻¹ +	۵ ³ ٤ ⁻² +	۵,4 ٤-3+ ···
- 27 -	ቢ⁻ ' ፪~ –	۵253 -	۵٫٫۶۰4−…	-z' - Q' E' -	۵-٤ -	۵٫۶ ٤۴ − …




X(₹ ¹) X(₹)	Xn X-n	
X(₹) X(₹¹)	- Xn - X-m	

$\chi(z) = \frac{-z^{-1}}{1 - \alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1}$	$\chi(z^{-1}) = \frac{-z}{1-\alpha^{-1}z} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{n+1}$
$-\sum_{n=1}^{\infty} \alpha^{-n+1} Z^{-n} \qquad z > \alpha^{-1}$	$-\sum_{n=1}^{\infty} \alpha^{n+1} \overline{z}^{-n} \qquad \overline{z} < 0$
$-\left(\frac{1}{\alpha}\right)^{n-1} \qquad f \gg 1$	$-a^{n+i} n < 0$

 $a + a^{2} \xi' + a^{3} \xi^{2} + a^{4} \xi^{3} + \cdots + a^{2} \xi^{-1} + a^{3} \xi^{-2} + a^{4} \xi^{-3} + \cdots$ $-z^{-1} - a^{-1}z^{-1} - a^{-2}z^{-3} - a^{-3}z^{-4} - \cdots -z^{-1} - a^{-1}z^{-1} - a^{-2}z^{-3} - a^{-3}z^{-4} - \cdots$

