
Young Won Lim
6/19/24

Thumb Instruction Programming

Thumb Instruction
Programming

2 Young Won Lim
6/19/24

 Copyright (c) 2024 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Thumb Instruction
Programming

3 Young Won Lim
6/19/24

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Thumb Instruction
Programming

4 Young Won Lim
6/19/24

Thumb Instruction Programming

Thumb Instruction
Programming

5 Young Won Lim
6/19/24

R8

R9

R10

R11

R12

ARM vs. Thumb programmer’s models

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

● 16 + 1 = 17 normal registers

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

CPSR

ARM state Thumb state

● 11 + 1 = 12 normal registers

ARM state

Thumb state

Thumb Instruction
Programming

6 Young Won Lim
6/19/24

ARM Register Sets (2-1)

https://www.embedded.com/introduction-to-arm-thumb/

● The biggest register difference involves the SP register.

● the Thumb state

unique stack mnemonics (PUSH, POP)

● the ARM state.

no such stack mnemonics (PUSH, POP)

● PUSH, POP instructions assume

the existence of a stack pointer (R13)

● PUSH, POP instructions translate

into load and store instructions

in the ARM state.

Thumb Instruction
Programming

7 Young Won Lim
6/19/24

ARM Register Sets (2-2)

https://www.embedded.com/introduction-to-arm-thumb/

● The CPSR register holds
• processor mode bits (user or exception flag)
• interrupt mask bits
• condition codes and
• Thumb status bit

● The Thumb status bit (T) indicates
the processor’s current state:
• 0 for ARM state (default)
• 1 for Thumb.

● Although other bits in the CPSR may be modified in
software, it’s dangerous to write to T directly;
• the results of an improper state change are

unpredictable.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

N Negative flag
Z Zero flag
C Carry flag
V Overflow flag

To disable Interrupt (IRQ), set I
To disable Fast Interrupt (FIQ), set F

USR User mode
FIQ Fast Interrupt mode
SVC Supervisor mode
ABT Abort mode
UND Undefined mode
SYS System mode

Thumb Instruction
Programming

8 Young Won Lim
6/19/24

Branch instructions

B, BL,
BX, BLX

https://developer.arm.com/documentation/dui0489/c/arm-and-thumb-instructions/branch-and-control-instructions/b--bl--bx--blx--and-bxj

BL and BLX copy the return address into LR (R14)

B, BL,
BX, BLX BX and BLX can change the processor state

Thumb Instruction
Programming

9 Young Won Lim
6/19/24

Branch, and Branch and Link (1)

https://www.embedded.com/introduction-to-arm-thumb/

● B {cond} label
● BL {cond} label

● cond is an optional condition code
● label is a program-relative expression

● The B instruction
● causes a branch to label.

● The BL instruction
● copies the address of the next instruction

into r14 (lr, the link register)
● causes a branch to label.

Thumb Instruction
Programming

10 Young Won Lim
6/19/24

Branch, and Branch and Link (2)

https://www.embedded.com/introduction-to-arm-thumb/

● Machine-level B and BL instructions
have a range of ±32Mb
from the address of the current instruction.

● However, you can use these instructions
even if label is out of range.

● Often you do not know
where label is placed by the linker.

● When necessary, the ARM linker
adds veneer code to allow longer branches

224 Byte = 24 MB = 16 MB

+/- 8 MB (forward, backward)

+/- 32 MB (2 lsb’s : 4 bytes alignment)

Thumb Instruction
Programming

11 Young Won Lim
6/19/24

Branch, and Branch and Link (3)

https://community.arm.com/support-forums/f/architectures-and-processors-forum/3061/range-of-bl-instruction-in-arm-state

● The ARM BL instruction has a 24-bit immediate for
encoding the branch offset

● this would give you a range of 224 bytes, or +/-8MB
(given that the immediate allows forwards or backwards).

● all ARM instructions are 4 bytes long,
and must be size aligned.

● no need to consider the two least significant bits
of the address

● taking our branch range from +/-8MB to +/-32MB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond Offset1 0 1 L (11)

0 24-bit immediate 224 Byte = 24 MB +/- 8 MB
+/- 32 MB

1

B

BL

224 Byte = 24 MB = 16 MB

+/- 8 MB (forward, backward)

+/- 32 MB (2 lsb’s : 4 bytes alignment)

Thumb Instruction
Programming

12 Young Won Lim
6/19/24

3. Branch and Branch and eXchange (B, BX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond Offset1 0 1 L (11)

cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn1 1 1 1 1 1 1 1 1 1 1 1 (5)

Branch

Branch and Exchange

R14 := PC=8; PC := Offset

PC := Rn; (Rn[0]=1 Thumb, else ARM)

LinkL Rn Operand Reg

0B

Thumb Instruction
Programming

13 Young Won Lim
6/19/24

Branch and Branch with Link (B, BL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC := Offset

cond 1 0 1 0 24-bit signed word offset

Branch B{<cond>} <target address>

cond 1 0 1 1 24-bit signed word offset

Branch with Link BL{<cond>} <target_address> R14 := PC+8; PC := Offset

cond Offset1 0 1 L (11)

Branch PC := Offset

0

1

B

BL

Thumb Instruction
Programming

14 Young Won Lim
6/19/24

Br and eXchange, Br with Link and eXchange (BX, BLX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 0 0 1 Rn1 1 1 1 1 1 1 1 1 1 1 1 (5)

Branch and Exchange PC := Rn; (Rn[0]=1 Thumb, else ARM)

cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

Branch and Exchange BX{<cond>} Rn PC := Rn;
(Rn[0]=1 Thumb, else ARM)

cond 0 0 0 1 0 0 1 0 0 0 1 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

Branch with Link and Exchange BLX{<cond>} Rn R14 := PC+8; PC := Rn;
(Rn[0]=1 Thumb, else ARM)

Offset1 0 1 H

Branch with Link and Exchange BLX{<cond>} <address> PC := Offset

1 1 1 1

Half Word AddressH

0

Rn[0] = 0 → to ARM state
Rn[0] = 1 → to Thumb state

always changes the state.
ARM state → Thumb state
Thumb state → ARM state

Rn[0] = 0 → to ARM state
Rn[0] = 1 → to Thumb state

0

1

BX

BLX 1

to ARM state

to Thumb state

Thumb Instruction
Programming

15 Young Won Lim
6/19/24

Branch instructions – changing the state

https://developer.arm.com/documentation/dui0489/c/arm-and-thumb-instructions/branch-and-control-instructions/b--bl--bx--blx--and-bxj

BX Rn changes the state depending on bit[0] of Rn:
BLX Rn

Offset1 0 1 H

Branch with Link and Exchange BLX{<cond>} <address> PC := Offset

1 1 1 1

cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

Branch and Exchange BX{<cond>} Rn PC := Rn;
(Rn[0]=1 Thumb, else ARM)

cond 0 0 0 1 0 0 1 0 0 0 1 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

Branch with Link and Exchange BLX{<cond>} Rn R14 := PC+8; PC := Rn;
(Rn[0]=1 Thumb, else ARM)

 Rn[0] = 0 → ARM state
 Rn[0] = 1 → Thumb state

ARM state → Thumb state
Thumb state → ARM state

BLX label always changes the state.

Thumb Instruction
Programming

16 Young Won Lim
6/19/24

Branch and link operation (1)

Both the ARM and Thumb instruction sets contain
a primitive subroutine call instruction, BL,
which performs a branch-with-link operation.

LR ← the return address
 the next value of the PC

PC ← the destination address

LR[0] ← 1 if the BL executed from Thumb state
LR[0] ← 0 if the BL executed from ARM state

The result is to transfer control
to the destination address,
passing the return address in LR
as an additional parameter
to the called subroutine

/IHI0042E_aapcs.pdf

Thumb Instruction
Programming

17 Young Won Lim
6/19/24

Branch and link operation (2)

Control is returned to the instruction following the BL
when the return address is loaded back into the PC

A subroutine call can be synthesized
by any instruction sequence that has the effect:

LR[31:1] ← return address
LR[0] ← code type at return address

(0 ARM, 1 Thumb)
PC ← subroutine address ... return address:

/IHI0042E_aapcs.pdf

bl target

LR

main

return
address

LR ← the return address
PC ← the destination address

LR[31:1] ← the return address
LR[0] ← 0 ARM code at the return address
LR[0] ← 1 Thumb code at the return address

target

Thumb Instruction
Programming

18 Young Won Lim
6/19/24

Branch and exchange operations

● There are several ways to enter or leave the Thumb state properly.

● The usual method is via the Branch and Exchange (BX) instruction.
● See also Branch, Link, and Exchange (BLX) with version 5 architecture.

● During the branch, the CPU examines
the least significant bit (LSb) of the destination address
to determine the new state.

● Since all ARM instructions will align themselves
on either a 32- or 16-bit boundary,
the LSB of the address is not used in the branch directly.

● However, if the LSB is 1 when branching from ARM state,
the processor switches to Thumb state
before it begins executing from the new address;

● if 0 when branching from Thumb state,
back to ARM state it goes.

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

the LSB of BX destination
the LSB of BX return address

0 : ARM state
1 : thumb state

Thumb Instruction
Programming

19 Young Won Lim
6/19/24

32-bit / 16-bit alignment

Since all ARM instructions have
either a 32- or 16-bit alignment

the LSB of the address is not used in the branch directly.

32-bit (4 bytes) - the least significant 2 bits of the target address
16-bit (2 bytes) - the least significatn 1 bit of the target address

 use the the least significant bit is used to change the state

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

32-bit word alignment 16-bit halfword alignment

address (32-bit word) address (16-bit halfword)

not used not used

+4

+4

+2

+2

Thumb Instruction
Programming

20 Young Won Lim
6/19/24

State changing example (1)

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

thumb_sub:

Change into Thumb state, then back

mov R0, #5 ; argument to function is in R0
add R1, PC, #1 ; Load address of SUB_BRANCH, Set for THUMB by adding 1
BX R1 ; R1 contains address of SUB_BRANCH+1

; Assembler-specific instruction to switch to Thumb

SUB_BRANCH:
BL thumb_sub ; Must be in a space of +/- 4 MB
add R1, #7 ; Point to SUB_RETURN with bit 0 clear
BX R1

; Assembler-specific instruction to switch to ARM

SUB_RETURN:

Thumb Instruction
Programming

21 Young Won Lim
6/19/24

State changing example (2)

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

Change into Thumb state, then back

mov R0, #5
add R1, PC, #1
BX R1

; switch to Thumb

SUB_BRANCH:
BL thumb_sub
add R1, #7
BX R1

; switch to ARM

SUB_RETURN:

In ARM mode, PC indicates 2 instructions ahead

PC of 'ADD R1,PC,#1' is
the address of SUB_BRANCH

execution mode switch from ARM to Thumb
at the SUB_BRANCH and
the program will execute in Thumb mode.

And R1 is now 'SUB_BRANCH+1'
and by adding to 7
it will become 'SUB_BRANCH+8'.

'SUB_BRANCH+8' is
the address of 'SUB_RETURN' and
the program jumps to the address
of which LSB value is 0 and
the execution mode will become
from Thumb mode to ARM mode.

Thumb Instruction
Programming

22 Young Won Lim
6/19/24

State changing example (3)

/IHI0042E_aapcs.pdf

must ensure
 LR[0] = 1, → Thumb state

 BX LR

 MOV LR, PC
 BX r4 ***

 BX LR

no need explicit
 LR[0] = 0, → ARM state

in ARM-state, to call a subroutine addressed by r4
with control returning to the following instruction, do:

MOV LR, PC
BX r4

The equivalent sequence will not work from Thumb state
because the instruction that sets LR (MOV LR, PC)
does not copy the Thumb-state bit to LR[0].

Thumb Instruction
Programming

23 Young Won Lim
6/19/24

Thumb long branch with link BL instruction (1)

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

THUMB assembler : BL label

H=0
LR := PC + OffsetHigh << 12

H=1
temp := next instruction address
PC := LR + OffsetLow << 1 PC := PC + (OffsetHigh << 12) + (OffsetLow << 1)
LR := temp | 1

1 1 1 1 0 11-bit Offset_high

1 1 1 1 1 11-bit Offset_low

11-bit Offset_high 11-bit Offset_low 023-bit Offset

H=0

H=1

Thumb Instruction
Programming

24 Young Won Lim
6/19/24

Thumb long branch with link BL instruction (2)

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 24-bit Offset1 0 1 L

Branch PC := Offset

ARM B or BL instruction

1 1 1 1 H Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 11-bit Offset_high

1 1 1 1 1 11-bit Offset_low

11-bit Offset_high 11-bit Offset_low 0

Thumb BL instruction

23-bit Offset

H=0

H=1

Thumb Instruction
Programming

25 Young Won Lim
6/19/24

Thumb long branch with link BL instruction (3)

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

Examples

BL faraway ; Unconditionally Branch to 'faraway'
next ... ; and place following instruction address,

; ie ’next’, in R14, the Link Register (LR)
; and set bit 0 of LR high (1)
; Note that the THUMB opcodes will contain
; the number of halfwords to offset.

faraway ... ; Must be Half-word aligned.

H=0
LR := PC + OffsetHigh << 12

H=1
temp := next instruction address
PC := LR + OffsetLow << 1 PC := PC + (OffsetHigh << 12) + (OffsetLow << 1)
LR := temp | 1

Thumb Instruction
Programming

26 Young Won Lim
6/19/24

Thumb long branch with link BL instruction (4)

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

● This format specifies a long branch with link.

● The assembler splits
the 23-bit two’s complement half-word offset
specifed by the label into two 11-bit halves,
ignoring bit 0 (which must be 0),
and creates two THUMB instructions.

● Instruction 1 (H = 0)
• In the first instruction

the Offset field contains
• the upper 11 bits of the target address.
• this is shifted left by 12 bits and
• added to the current PC address.
• The resulting address is placed in LR.

● Instruction 2 (H =1)
• In the second instruction

the Offset field contains
• the lower 11-bit of the target address.
• this is shifted left by 1 bit and
• added to LR.
• LR, which now contains the full 23-bit address,

is placed in PC,
the address of the instruction following the BL

• is placed in LR and bit 0 of LR is set.
• the branch offset must take account of

the prefetch operation,
• which causes the PC to be 1 word (4 bytes)

ahead of the current instruction

Thumb Instruction
Programming

27 Young Won Lim
6/19/24

Branch and Exchange (1)

https://www.embedded.com/introduction-to-arm-thumb/

● the Branch and Exchange (BX) instruction.
● also Branch, Link, and Exchange (BLX)

if you’re using an ARM with version 5 architecture.

● During the branch, the CPU examines
the least significant bit (lsb) of the destination address
to determine the new state.

BX R0 ; to ARM state
BLX R0 ; to ARM state

0R0

BX R0 ; to Thumb state
BLX R0 ; to Thumb state

1R0

Thumb Instruction
Programming

28 Young Won Lim
6/19/24

Branch and Exchange (2)

https://www.embedded.com/introduction-to-arm-thumb/

● Since all ARM instructions will align themselves
on either a 32- or 16-bit boundary,
the lsb of the address is not used in the branch directly.

● if the lsb is 1 when branching from ARM state,
the processor switches to Thumb state
before it begins executing from the new address;

● if the lsb is 0 when branching from Thumb state,
the processor switches back to ARM state it goes.

BX Rm
 BLX Rm

; destination address in the regsiter Rm
 If Rm[0] is 0, to ARM state.
 If Rm[0] is 1, to Thumb state.

 BLX lable
; destination address is the PC-relative lable expression

 always change: (ARM → Thumb, Thumb → ARM)

Thumb Instruction
Programming

29 Young Won Lim
6/19/24

Branch and Exchange (2)

https://www.embedded.com/introduction-to-arm-thumb/

change into Thumb state, then back

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address of SUB_BRANCH+1

; assembler-specific instruction
; to switch to Thumb

SUB_BRANCH:
BL thumb_sub ; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN with bit 0 clear
BX R1
; assembler-specific instruction to switch to ARM
SUB_RETURN:

Thumb Instruction
Programming

30 Young Won Lim
6/19/24

Branch and Exchange (3)

https://www.embedded.com/introduction-to-arm-thumb/

● the BX instruction example
to go from ARM to Thumb state and back.

● first switches to Thumb state (BX R1)

● then calls a subroutine written
in Thumb code (BL thumb_sub)

● upon return from the subroutine (BX R1)
the system again switches back
to ARM state;

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address

; of SUB_BRANCH+1
; to switch to Thumb

SUB_BRANCH:
BL thumb_sub

; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN

; with bit 0 clear
BX R1 ; to switch to ARM
SUB_RETURN:

Thumb Instruction
Programming

31 Young Won Lim
6/19/24

Branch and Exchange (4)

https://www.embedded.com/introduction-to-arm-thumb/

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address

;of SUB_BRANCH+1
;to switch to Thumb

SUB_BRANCH:
BL thumb_sub

; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN

; with bit 0 clear
BX R1 ; to switch to ARM
SUB_RETURN:

+4

+4

● this example assumes that
R1 is preserved by the subroutine.

● The PC always contains
the address of the current instruction plus 8

• add R1, PC,#1
• (4 bytes)

• BX R1
• (4 bytes)

• SUB_BRANCH
• (PC of add inst. + 8 bytes)

•

•

Thumb Instruction
Programming

32 Young Won Lim
6/19/24

Branch and Exchange (5)

https://www.embedded.com/introduction-to-arm-thumb/

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address

;of SUB_BRANCH+1
;to switch to Thumb

SUB_BRANCH:
BL thumb_sub

; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN

; with bit 0 clear
BX R1 ; to switch to ARM
SUB_RETURN:

● The Thumb BL instruction actually resolves
into two instructions, so 8 bytes are used between
SUB_BRANCH and SUB_RETURN .

● BL thumb_sub (4 bytes)

• BL (H=0) Offset_high (2 bytes)
• BL (H=1) Offset_low (2 bytes)

● add R1, #7 (2 bytes)
● BX R1 (2 bytes)

Thumb Instruction
Programming

33 Young Won Lim
6/19/24

Switching the state (1) BX or BLX

https://www.embedded.com/introduction-to-arm-thumb/

● There are several ways to enter or leave
the Thumb state properly.

● The usual method is
via the Branch and Exchange (BX) instruction.

● also Branch, Link, and Exchange (BLX)
if you’re using an ARM with version 5 architecture.

● During the branch, the CPU examines
the least significant bit (lsb) of the destination address
to determine the new state.

BX R0 ; to ARM state
BLX R0 ; to ARM state

0R0

BX R0 ; to Thumb state
BLX R0 ; to Thumb state

1R0

Thumb Instruction
Programming

34 Young Won Lim
6/19/24

Switching the state (2) Exception Handler

https://www.embedded.com/introduction-to-arm-thumb/

● When an exception occurs, the processor
automatically begins executing in ARM state
at the address of the exception vector.

● So another way to change state is
to place your 32-bit code in an exception handler.

● If the CPU is running in Thumb state
when that exception occurs, you can count on it
being in ARM state within the handler.

● If desired, you can have the exception handler
put the CPU into Thumb state via a branch.

Thumb Instruction
Programming

35 Young Won Lim
6/19/24

Switching the state (3) T bit in the SPSR

https://www.embedded.com/introduction-to-arm-thumb/

The final way to change the state is
via a return from exception.

● When returning from the processor’s exception mode,
the saved value of T in the SPSR register is used
to restore the state.

● This T bit can be used, for example,
by an operating system
to manually restart a task in the Thumb state –
if that’s how it was running previously.

Thumb Instruction
Programming

36 Young Won Lim
6/19/24

Thumb instruction set benefits

https://www.embedded.com/introduction-to-arm-thumb/

● The biggest reason to look for an ARM processor
with the Thumb instruction set is
if you need to reduce code density.

● In addition to reducing the total amount of memory
required, you may also be able
to narrow the data bus to just 16 bits.

● With the narrower bus, it will take two bus cycles
to fetch a single 32-bit instruction;

● but you’ll only pay that penalty
in the parts of your code
that can’t be implemented
with the Thumb instructions.

● And you’ll still have the benefits
of a powerful 32-bit RISC processor.
A nifty trick indeed.

Thumb Instruction
Programming

37 Young Won Lim
6/19/24

BLX in ARM Architecture v5

In ARM Architecture v5
both ARM and Thumb state
provide a BLX instruction
that will call a subroutine addressed by a register
and correctly sets the return address
to the sequentially next value of the program counter.

/IHI0042E_aapcs.pdf

Thumb Instruction
Programming

38 Young Won Lim
6/19/24

Thumb → ARM interworking call

to BL to an intermediate Thumb code segment
that executes the BX instruction.

the BL instruction loads the link register
immediately before the BX instruction is executed.

In addition, the Thumb instruction set version of BL sets bit 0
when it loads the link register with the return address.

When a Thumb-to-ARM interworking subroutine call returns
using a BX LR instruction, it causes the required state change
to occur automatically.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-
subroutines

 CODE16
ThumbProg
 MOV r0, #2
 MOV r1, #3
 ADR r4, ARMSubroutine

 BL __call_via_r4

Stop
 MOV r0, #0x18
 LDR r1, =0x20026
 SWI 0xAB
__call_via_r4

 BX r4

 CODE32
ARMSubroutine
 ADD r0, r0, r1
 BX LR

 END

BL __call_via_r4

BX r4

Stop

BX r4

LR[0] = 0 → ARM state

BX LR

Thumb Instruction
Programming

39 Young Won Lim
6/19/24

Thumb → ARM interworking call

If you always use the same register
to store the address of the ARM subroutine
that is being called from Thumb,
this segment can be used
to send an interworking call to any ARM subroutine.

You must use a BX LR instruction
at the end of the ARM subroutine to return to the caller.

You cannot use the MOV pc,lr instruction
to return in this situation
because it does not cause
the required change of state.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-
subroutines

ADR r4, ARMSubroutine

 CODE16
ThumbProg

 ADR r4, ARMSubroutine
 BL __call_via_r4

__call_via_r4
 BX r4

 CODE32
ARMSubroutine

 BX LR

Thumb Instruction
Programming

40 Young Won Lim
6/19/24

ARM → Thumb interworking call

no need to set bit 0 of the link register
because the routine is returning to ARM state.

store the return address by copying PC into LR
with a MOV lr,pc instruction
immediately before the BX instruction.

Remember that the address operand to the BX instruction
that calls the Thumb subroutine must have bit 0 set
so that the processor executes in Thumb state on arrival.

As with Thumb-to-ARM interworking subroutine calls,
you must use a BX instruction to return.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-
subroutines

 CODE16
ADR r4, ThumbSub + 1

 …
 MOV lr, pc
 BX r4

 CODE16
ThumbSub
 ADD r0, r0, r1
 BX LR
 END

LR[0] = 0 → ARM state

ADR r4, ThumbSub + 1
BX r4

Thumb Instruction
Programming

41 Young Won Lim
6/19/24

ARM → Thumb interworking call example code (1)

 AREA ArmAdd,CODE,READONLY
 ; name this block of code.
 ENTRY ; Mark 1st instruction to call.
 ; Assembler starts in ARM mode.
main
 ADR r2, ThumbProg + 1
 ; Generate branch target address and set bit 0,
 ; hence arrive at target in Thumb state.
 BX r2 ; Branch exchange to ThumbProg.
 CODE16 ; Subsequent instructions are Thumb.
ThumbProg
 MOV r0, #2 ; Load r0 with value 2.
 MOV r1, #3 ; Load r1 with value 3.
 ADR r4, ARMSubroutine ; Generate branch target address, leaving bit 0
 ; clear in order to arrive in ARM state.
 BL __call_via_r4 ; Branch and link to Thumb code segment that will
 ; carry out the BX to the ARM subroutine.
 ; The BL causes bit 0 of lr to be set.
Stop ; Terminate execution.
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0xAB ; Angel semihosting Thumb SWI
__call_via_r4 ; This Thumb code segment will
 ; BX to the address contained in r4.
 BX r4 ; Branch exchange.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-
subroutines

Thumb Instruction
Programming

42 Young Won Lim
6/19/24

ARM → Thumb interworking call example code (2)

 CODE32 ; Subsequent instructions are ARM.
ARMSubroutine
 ADD r0, r0, r1 ; Add the numbers together
 BX LR ; and return to Thumb caller
 ; (bit 0 of LR set by Thumb BL).
 END ; Mark end of this file.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-
subroutines

Thumb Instruction
Programming

43 Young Won Lim
6/19/24

Thumb → ARM interworking call example code (1)

 AREA ThumbAdd,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark 1st instruction to call.
 ; Assembler starts in ARM mode.
main
 MOV r0, #2 ; Load r0 with value 2.
 MOV r1, #3 ; Load r1 with value 3.
 ADR r4, ThumbSub + 1 ; Generate branch target address and set bit 0,
 ; hence arrive at target in Thumb state.
 MOV lr, pc ; Store the return address.
 BX r4 ; Branch exchange to subroutine ThumbSub.
Stop ; Terminate execution.
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; Angel semihosting ARM SWI

 CODE16 ; Subsequent instructions are Thumb.
ThumbSub
 ADD r0, r0, r1 ; Add the numbers together
 BX LR ; and return to ARM caller.
 END ; Mark end of this file.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-
subroutines

Thumb Instruction
Programming

44 Young Won Lim
6/19/24

Cortex-M3 : 32-bit processor

https://developer.arm.com/documentation/dui0552/a/introduction/about-the-cortex-m3-processor-and-core-peripherals

● The Thumb instruction set is a subset of the most
commonly used 32-bit ARM instructions.

● Thumb instructions are each 16 bits long,
and have a corresponding 32-bit ARM instruction
that has the same effect on the processor model.

● The Cortex-M3 processor is
a high performance 32-bit processor
designed for the microcontroller market.

● It offers significant benefits to developers, including:
outstanding processing performance combined with

➢ fast interrupt handling.
➢ enhanced system debug with
➢ extensive breakpoint and trace capabilities.

Thumb Instruction
Programming

45 Young Won Lim
6/19/24

Cortex-M3 : Thumb state only

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● The Cortex-M3 processor only supports
execution of instructions in Thumb state. (T = 1)

● The following can clear the T bit to 0:

● instructions BLX, BX and POP {PC}

● restoration from the stacked xPSR value
on an exception return

● bit[0] of the vector value on an exception entry or reset.

● In the Cortex-M3 processor, attempting to execute
instructions when the T bit is 0 results in a fault or lockup.
See Lockup for more information.

● The Thumb status bit (T) indicates
the processor’s current state:
• 0 for ARM state (default)
• 1 for Thumb.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

Thumb Instruction
Programming

46 Young Won Lim
6/19/24

Thumb Instruction

Thumb Instruction
Programming

47 Young Won Lim
6/19/24

Thumb instructions (1)

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

● The Thumb instructions
 16-bit instructions
 a compact shorthand for a subset of

the 32-bit ARM instructions

● every Thumb instruction has
the equivalent 32-bit ARM instruction.

● not every ARM instructions has
the equivalent Thumb subset;

● a single ARM instruction can only be simulated
with a sequence of Thumb instructions

 for example, there's no way
to access status or coprocessor registers.

 a long branch with link (BL)
 the assembler splits

Instruction 1 (H = 0)
Instruction 2 (H = 1)

Thumb Instruction
Programming

48 Young Won Lim
6/19/24

Thumb instructions (2)

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

● the ARM contains only one instruction set:
the 32-bit set.

● When it's operating in the Thumb state,

the processor simply expands
the smaller shorthand instructions
fetched from memory

into their 32-bit equivalents.

● The difference between two equivalent instructions
(the ARM and Thumb instructions) lies in

how the instructions are
fetched and interpreted
prior to execution,
not in how they function.

● dedicated hardware expands
the 16-bit instruction into 32-bit

it doesn't slow execution even a bit.

● the narrower 16-bit instructions
do offer memory advantages.

Thumb Instruction
Programming

49 Young Won Lim
6/19/24

Thumb instructions (3)

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

● Roughly speaking, a CPU instruction is
a particular sequence of bits

● to the CPU, a particular sequence of bits could mean
"add two 32-bit values and carry"

● The exact value of bits in this sequence
has nothing to do with values being added.

● In the ARM mode, this sequence of bits has 32 bits.
● In the thumb mode, it only has 16 bits.

● apparently, the thumb mode has less number
of encoded instructions than the ARM mode
(less bits to encode them),

● for a same function,
most instructions are encoded differently
for the ARM and the thumb modes, respectively,

Thumb Instruction
Programming

50 Young Won Lim
6/19/24

Thumb instructions (4)

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

● for example, the x86 uses 8-bit instructions
but is also able to work on 32 bit values.

● For ARM, the instruction length is what changes
when you switch to/from ARM and thumb modes.

● For example, the instruction MOV R0, R1
copy the contents of the 32-bit R1 register
to the R0 register

is encoded in the following way:

● E1A00001 for ARM (32 bit : 4 bytes)
● 4608 for Thumb (16-bit : 2 bytes)

● But the processor will perform
exactly the same operation, and
it will do it on 32-bit wide data,
whatever the mode.

Thumb Instruction
Programming

51 Young Won Lim
6/19/24

Thumb instructions (5)

https://developer.arm.com/documentation/ddi0333/h/introduction/arm1176jz-s-architecture-with-jazelle-technology/the-thumb-instruction-set

● The Thumb instruction set is a subset of the most
commonly used 32-bit ARM instructions.

● Thumb instructions are 16 bits long, and
have a corresponding 32-bit ARM instruction
that has the same effect on the processor model.

● Thumb instructions operate
with the standard ARM register configuration,
enabling excellent interoperability
between ARM and Thumb states.

● Thumb has all the advantages of a 32-bit core:

• 32-bit address space
• 32-bit registers
• 32-bit shifter and Arithmetic Logic Unit (ALU)
• 32-bit memory transfer

Thumb Instruction
Programming

52 Young Won Lim
6/19/24

Thumb instructions (6)

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

● The ARM processor
can manipulate 32 bit values
because it is a 32-bit processor,
whatever mode it is running in (Thumb or ARM).

● thus, registers are 32 bits wide

● register width doesn't change
when you switch mode (state)

● the data bus width of the processor
has nothing to do with
the length of the instructions.

● The instructions could be encoded in any length.

Thumb Instruction
Programming

53 Young Won Lim
6/19/24

Thumb instructions (7)

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

● The Thumb instruction set provides
most of the functionality of a typical application.

• arithmetic and logical operations
• load/store data movements
• conditional and unconditional branches

● any code written in C could be
executed successfully in Thumb state.

● However, device drivers and exception handlers
must often be written at least partly in ARM state

Thumb Instruction
Programming

54 Young Won Lim
6/19/24

Thumb instructions (8)

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

● Switching modes allows programmers
to decide on the compromise
between code density and flexibility

● can pack more instructions
in a kB of code with 16-bit instructions,

● but the 32 bit instructions are more flexible
• they offer more features and
• you can do more with a single instruction

Thumb Instruction
Programming

55 Young Won Lim
6/19/24

Thumb instructions (9)

https://www.sciencedirect.com/topics/computer-science/thumb-instruction-set

● All Thumb instructions are 16 bits in length.

● Thumb provides approximately 30% better code density
over ARM code.

● Most code written for Thumb is in a high-level language
such as C and C++.

● ATPCS (ARM Thumb Procedure Call Standard) defines
how ARM and Thumb code call each other,
called ARM-Thumb interworking.

● Interworking uses the branch exchange (BX) instruction
and branch exchange with link (BLX) instruction
to change state and jump to a specific routine.

Thumb Instruction
Programming

56 Young Won Lim
6/19/24

Thumb instructions (10)

https://www.sciencedirect.com/topics/computer-science/thumb-instruction-set

● In Thumb, only the branch instructions
are conditionally executed.

● The barrel shift operations are separate instructions
 ASR
 LSL
 LSR
 ROR

● The multiple-register load-store instructions
only support the increment after (IA) addressing mode.

● The Thumb instruction set includes POP and PUSH
instructions as stack operations.

● POP and PUSH instructions only support
a full descending stack.

● There are no Thumb instructions
to access the coprocessors, cpsr, and spsr.

Thumb Instruction
Programming

57 Young Won Lim
6/19/24

Thumb instructions (11)

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

ARM Thumb

(CPSR T=0) (CPSR T=1)

Instruction size 32-bit 16-bit

Core instructions 58 30

Conditional execution most only branch instruction

Data Processing access to barrel shifter separate barrel shifter

Instructions and ALU and ALU instructions

Program Status Reg R/W in privileged mode no direct access

Register usage 15 general purpose reg 8 general purpose reg

 + PC + 7 high reg + PC

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

Thumb Instruction
Programming

58 Young Won Lim
6/19/24

Thumb-2 Instruction

Thumb Instruction
Programming

59 Young Won Lim
6/19/24

Thumb-2 Instructions (1)

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

● Thumb-1 only does 16 bit instructions
● Thumb-2 can do both 16 bit & 32 bit instructions

● Thumb-1 and Thumb-2
● share same architecture for 32 bit data.
● share the same data bus

since only the instruction registers are different.

● for 64 bit processors,
Thumb (T32) can support

both 16 & 32 bit instructions
with some different in each set

in order to conserve code space for some applications
but at the expense of duplicate libraries.

T32
Mixed 16- and 32-bit

instructions
32-bit GP regs

A32
32-bit instructions

32-bit GP regs

A64
32-bit instructions

32- and 64-bit GP regs

Thumb-1
16-bit

instructions
32-bit GP regs

Thumb-2
Mixed 16- and 32-bit

instructions
32-bit GP regs

Thumb Instruction
Programming

60 Young Won Lim
6/19/24

Thumb-2 Instructions (2)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

● Thumb-2 is an enhancement
to the 16-bit Thumb instruction set.

● Thumb-2 adds 32-bit instructions
that can be freely intermixed
with 16-bit instructions in a program.

● the additional 32-bit instructions
enable Thumb-2

● to cover the functionality of the ARM instruction set.

● to combine the code density of earlier versions of
Thumb, with performance of the ARM instruction.

ARM 32-bit
Thumb 16-bit
Thumb-2 16-bit 32-bit

added
32-bit
Thumb-2
instruction

Thumb Instruction
Programming

61 Young Won Lim
6/19/24

Thumb-2 Instructions (3)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

● The most important difference
between the Thumb-2 instruction set
and the ARM instruction set is

that most 32-bit Thumb instructions are unconditional,
whereas most ARM instructions can be conditional.

● Thumb-2 introduces a conditional execution instruction,
IT, that is a logical if-then-else function
that you can apply to following instructions
to make them conditional.

● If cond Then … Else …

ARM 32-bit
(conditional)

Thumb 16-bit
 (unconditional)

Thumb-2 16-bit 32-bit
 (unconditional) (unconditional)

ITTET EQ
ADD r0,r0,r0
ADD r1,r0,r0
ADD r2,r0,r0
ADD r3,r0,r0

ADDEQ r0,r0,r0 (Always if for 1st one)
ADDEQ r1,r0,r0 (T for 2nd one)
ADDNE r2,r0,r0 (E for 3rd one)
ADDEQ r3,r0,r0 (T for 4th one)

ITTET EQ
T EQ + ADD r0,r0,r0
T EQ + ADD r1,r0,r0
E EQ + ADD r2,r0,r0
T EQ + ADD r3,r0,r0

Thumb Instruction
Programming

62 Young Won Lim
6/19/24

Thumb-2 Instructions (4)

https://en.wikipedia.org/wiki/Jazelle#Implementation

● Thumb-2 instructions are accessible
as were Thumb instructions
when the processor is in Thumb state,
that is, the T bit in the CPSR is 1
and the J bit in the CPSR is 0.

● In addition to the 32-bit Thumb instructions,
there are several 16-bit Thumb instructions
and a few 32-bit ARM instructions,
introduced as part of the Thumb-2 architecture.

TJ = 10

Thumb Instruction
Programming

63 Young Won Lim
6/19/24

New 32-bit Thumb Instructions (1-1)

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

● The new 32-bit Thumb instructions are added
in the space previously occupied
by the Thumb BL and BLX instructions.

● This is made possible
by treating BL and BLX as 32-bit instructions,
instead of treating them as two 16-bit instructions.

● This means that BL and BLX, and
all the other 32-bit Thumb instructions,
can only take exceptions on their start address.

● They cannot take exceptions at the boundary
between halfword1 and halfword2 of the instruction.

TJ = 10

Thumb Instruction
Programming

64 Young Won Lim
6/19/24

New 32-bit Thumb Instructions (1-2)

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

● All implementations must ensure
that both halfwords are fetched and consolidated
before they are issued and executed
to comply with this exception event restriction.

● This is a change from Thumb.

● Before Thumb-2,
the two halfwords of BL and BLX instructions
execute independently,
and can take exceptions independently.

TJ = 10

Thumb Instruction
Programming

65 Young Won Lim
6/19/24

New 32-bit Thumb Instructions (2-1)

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

● The new 32-bit Thumb instructions are designed for:

● the existing ARM/Thumb Programmers' Model,
with as few modifications as possible.

● Certain changes are essential
to introduce the 32-bit Thumb instructions, notably
to the Prefetch abort and Undefined Instruction exceptions.

● There is no increase in the number of registers
(general purpose or special purpose registers), and
no increase in register sizes.

● existing compiler code generation techniques,
as far as possible.

TJ = 10

Thumb Instruction
Programming

66 Young Won Lim
6/19/24

New 32-bit Thumb Instructions (2-2)

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

● New concepts are supplementary rather than obligatory.

● For example, literals can still be loaded
using PC-relative instructions, or
use in-line immediate values embedded
in the MOV 16-bit immediate and MOVT instructions.

TJ = 10

Thumb Instruction
Programming

67 Young Won Lim
6/19/24

New 32-bit Thumb Instructions (3)

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

● You may not need to rewrite too much
depending on what features of the ARM instruction set
and ARM variant you've used.

● It's also possible that your ARM code is
already compatible with Thumb-2.

● ARM created Unified Assembly Language (UAL)
once Thumb-2 was introduced
in order to increase the portability of code.

● it is not a significant deviation
from ARM assembly of olden days,
with the biggest change being the introduction of
the IT(E) directive for conditional execution.

TJ = 10

Thumb Instruction
Programming

68 Young Won Lim
6/19/24

New 32-bit Thumb Instructions (4)

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

● There are some other constructs that won't port directly,
and if you are using features of a more advanced or
complex ARM core that the Cortex-M4 doesn't have,
then that will require a rewrite of that portion.

● I think if the code is not already written in ARM UAL that,
while it would take time, it would be relatively simple to run
a script over the code that can flag the usage of features
that are not written correctly for UAL.

● A simple regular expression could check for conditionals
on the end of instructions, and it may even be relatively
easy to then convert those constructs to use IT(E) <cond>.

● If cond Then … Else …

TJ = 10

Thumb Instruction
Programming

69 Young Won Lim
6/19/24

Thumb 2 instruction set (4)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

● The main enhancements are:

1. 32-bit instructions added to the Thumb instruction set to:
● provide support for exception handling in Thumb state
● provide access to coprocessors

• include Digital Signal Processing (DSP)
• and media instructions

2. improve performance in cases
where a single 16-bit instruction restricts
functions available to the compiler.

3. addition of a 16-bit IT instruction
that enables one to four following Thumb instructions,
the IT block, to be conditional

Thumb Instruction
Programming

70 Young Won Lim
6/19/24

Thumb 2 instruction set (5)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

● The main enhancements are:

4. addition of a 16-bit CZB instruction
● Compare with Zero and Branch (CZB)

 to improve code density by replacing two-instruction
sequence with a single instruction.

5. The 32-bit ARM Thumb-2 instructions are added
in the space occupied by the Thumb
BL and BLX instructions

Thumb Instruction
Programming

71 Young Won Lim
6/19/24

32-bit ARM Thumb-2 Instruction Format (1)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

● The first halfword (hw1) determines
the instruction length and functionality.

● If the processor decodes the instruction as 32-bit long,
then the processor fetches the second halfword (hw2)
of the instruction from the instruction address plus two.

● The availability of both 16-bit Thumb
and 32-bit instructions in the Thumb-2 instruction sets,
gives you the flexibility to emphasize
performance or code size on a subroutine level,
according to the requirements of their applications.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hw1 hw2

Thumb Instruction
Programming

72 Young Won Lim
6/19/24

32-bit ARM Thumb-2 Instruction Format (2)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

● For example, you can code critical loops for applications
such as fast interrupts and DSP algorithms
using the 32-bit media instructions in Thumb-2
and use the smaller 16-bit classic Thumb instructions
for the rest of the application.
This is for code density and does not require any mode
change.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond Rn

Thumb Instruction
Programming

73 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (1)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● officially there's no "Thumb-2 instruction set".

● Ignoring ARMv8
● where everything is renamed

and AArch64 complicates things),
● from ARMv4T to ARMv7-A
● there are two instruction sets: ARM and Thumb.

● they are both "32-bit" in the sense that they operate on
 up-to-32-bit-wide data
 in 32-bit-wide registers
 with 32-bit addresses.

● In fact, they represent the exact same instructions

● it is only the instruction encoding which differs

● the CPU has two different decode front-ends
to its pipeline which it can switch between.

Thumb Instruction
Programming

74 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (2)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● ARM instructions have
● fixed-width 4-byte encodings
● which require 4-byte alignment.

● Thumb instructions have variable-length
 2-byte “narrow” encoding
 4-byte "wide" encoding

● requiring 2-byte alignment

● most instructions have 2-byte encodings,
● but bl and blx have always had 4-byte encodings*.

●

Thumb Instruction
Programming

75 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (3)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● The really confusing bit came in ARMv6T2, which
introduced "Thumb-2 Technology".

● Thumb-2 encompassed not just

 adding a load more instructions to Thumb
(mostly with 4-byte encodings)
to bring it almost to comparable to ARM,

 but also extending the execution state to allow for
conditional execution of most Thumb instructions,

 and finally introducing a whole new assembly syntax
(UAL, "Unified Assembly Language")

• which replaced the previous
separate ARM and Thumb syntaxes

• and allowed writing code once and
assembling it to either ARM or Thumb instruction set
without modification.

Thumb-2 Technology
4-byte encodings
conditional execution

UAL (Unified Assembly Language)
unify ARM and Thumb syntaxes
assembling to either ARM or Thumb

Thumb Instruction
Programming

76 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (4)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● The Cortex-M architectures only implement
the Thumb instruction set -

● ARMv7-M (Cortex-M3/M4/M7)
supports most of "Thumb-2 Technology",
including conditional execution and
encodings for VFP instructions,

● whereas ARMv6-M (Cortex-M0/M0+)
only uses Thumb-2 in the form of
a handful of 4-byte system instructions.

● Thus, the new 4-byte encodings
(and those added later in ARMv7 revisions)
are still Thumb instructions

● the "Thumb-2" aspect of them is
that they can have 4-byte encodings, and that
they can (mostly) be conditionally executed via it

their menmonics are seemed to be only defined in UAL

Thumb Instruction
Programming

77 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (7)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● Thumb: 16 bit instruction set

● ARM: 32 bit wide instruction set hence more flexible
instructions and less code density

● Thumb2 (mixed 16/32 bit):
a compromise between ARM and thumb(16) (mixing
them), to get both performance/flexibility of ARM and
instruction density of Thumb.

● so a Thumb2 instruction can be
either an ARM (only a subset of) with 32 bit wide
instruction
or a Thumb instruction with 16 bit wide.

Thumb Instruction
Programming

78 Young Won Lim
6/19/24

UAL (Unified Assembly Language) (1-1)

http://downloads.ti.com/docs/esd/SPNU118/unified-assembly-language-syntax-support-spnu1184444.html

● Unified assembly language (UAL) is
the new assembly syntax introduced by ARM Ltd.
● to handle the ambiguities introduced

by the original Thumb-2 assembly syntax and
● provide similar syntax for ARM, Thumb and Thumb-2.

● UAL is backwards compatible with old ARM assembly,
but incompatible with the Thumb assembly syntax.

● UAL syntax is the default assembly syntax
beginning with ARMv7 architectures.

Thumb Instruction
Programming

79 Young Won Lim
6/19/24

UAL (Unified Assembly Language) (1-2)

http://downloads.ti.com/docs/esd/SPNU118/unified-assembly-language-syntax-support-spnu1184444.html

● When writing assembly code,
the .arm and .thumb directives are used
to specify ARM and Thumb UAL syntax, respectively.

● The .state32 and .state16 directives remain
to specify non-UAL ARM and Thumb syntax.

● The .arm and .state32 directives are equivalent
since UAL syntax is backwards compatible in ARM mode.

● Since non-UAL syntax is not supported for Thumb-2
instructions, Thumb-2 instructions cannot be used
inside of a .state16 section.

● However, assembly code with .state16 sections that
contain only non-UAL Thumb code can be assembled
for ARMv7 architectures
to allow easy porting of older code.

Thumb Instruction
Programming

80 Young Won Lim
6/19/24

UAL (Unified Assembly Language) (2-1)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Unified-Assembler-Language

● the ARM Unified Assembler Language (UAL) syntax
provides a canonical form for all ARM and Thumb
instructions.

● UAL describes the syntax for the mnemonic and the
operands of each instruction.

● In addition, it assumes that
instructions and data items can be given labels.

● It does not specify the syntax to be used for labels,
nor what assembler directives and options are available.

●

Thumb Instruction
Programming

81 Young Won Lim
6/19/24

UAL (Unified Assembly Language) (2-2)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Unified-Assembler-Language

● Most earlier ARM assembly language mnemonics
are still supported as synonyms

● Most earlier Thumb assembly language mnemonics are
not supported.

●

Thumb Instruction
Programming

82 Young Won Lim
6/19/24

UAL (Unified Assembly Language) (3)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Unified-Assembler-Language

● UAL includes instruction selection rules
that specify which instruction encoding is selected
when more than one can provide the required functionality.

● For example, both 16-bit and 32-bit encodings exist
for an ADD R0, R1, R2 instruction.

● The most common instruction selection rule is that
when both 16-bit and 32-bit encodings are available,
the 16-bit encoding is selected, to optimize code density.

● Syntax options exist
to override the normal instruction selection rules and
ensure that a particular encoding is selected.

● These are useful when disassembling code,
to ensure that subsequent assembly produces
the original code, and in some other situations.

Thumb Instruction
Programming

83 Young Won Lim
6/19/24

NEON and VFP

https://stackoverflow.com/questions/4097034/arm-cortex-a8-whats-the-difference-between-vfp-and-neon

● For armv7 ISA (and variants)

● The NEON is a SIMD and parallel data processing unit
for integer and floating point data

● the VFP is a fully IEEE-754 compatible floating point unit

● In particular on the A8,
the NEON unit is much faster for just about everything,

● even if you don't have highly parallel data,
since the VFP is non-pipelined.

● So why would you ever use the VFP?!

● The most major difference is
that the VFP provides double precision floating point.

● Secondly, there are some specialized instructions
that that VFP offers that there are no equivalent
implementations for in the NEON unit.

● SQRT comes to mind, perhaps some type conversions.

Thumb Instruction
Programming

84 Young Won Lim
6/19/24

Jezelle DBX (Direct Bytecode Execution)

Thumb Instruction
Programming

85 Young Won Lim
6/19/24

Jazelle (1)

https://en.wikipedia.org/wiki/Jazelle#Implementation

● Jazelle DBX (direct bytecode execution)
is an extension that allows some ARM processors
to execute Java bytecode in hardware
as a third execution state
alongside the existing ARM and Thumb modes.

● Jazelle functionality was specified
in the ARMvTEJ architecture

● the first processor with Jazelle technology
was the ARM926EJ-S.

● Jazelle is denoted by a "J" appended to the CPU name
except for post-v5 cores where it is required
(albeit only in trivial form) for architecture conformance.

TJ = 10

Thumb Instruction
Programming

86 Young Won Lim
6/19/24

Jazelle (2)

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit

● The J bit
● The J bit in the CPSR indicates

when the processor is in Jazelle state.

● When J = 0
the processor is in ARM or Thumb state,
depending on the T bit.

● When J = 1
the processor is in Jazelle state.

TJ = 00 ARM
TJ = 10 Thumb

TJ = 01 Jazelle
TJ = 11 undef

Thumb Instruction
Programming

87 Young Won Lim
6/19/24

Jazelle (3)

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit

● The combination of J = 1 and T = 1 causes similar effects
to setting T=1 on a non Thumb-aware processor.

● That is, the next instruction executed causes
entry to the Undefined Instruction exception.

● entry to the exception handler
causes the processor to re-enter ARM state, and

● the handler can detect
that this was the cause of the exception
because J and T are both set in SPSR_und.

● MSR cannot be used to change the J bit in the CPSR.

TJ = 00 ARM
TJ = 10 Thumb

TJ = 01 Jazelle
TJ = 11 undef

Thumb Instruction
Programming

88 Young Won Lim
6/19/24

Jazelle (4)

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit

● The placement of the J bit
avoids the status or extension bytes in code
running on ARMv5TE or earlier processors.

● This ensures that OS code written
using the deprecated syntax
CPSR, SPSR, CPSR_all, or SPSR_all
for the destination of an MSR instruction
continues to work.

● The MSR instruction is used to write
● to the CPSR or
● to the SPSR of the current mode.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

FI Q IT[1:0] J GE IT[7:2] E A

flags CPSR_f status CPSR_s extension CPSR_x control CPSR_c

Thumb Instruction
Programming

89 Young Won Lim
6/19/24

CPSR Bits (1)

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit
https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

FI

N Negative flag

Z Zero flag

C Carry flag

V Overflow flag

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows whether the processor runs

in ARM state or in Thumb state.

never set this bit

can be changed only in a privileged mode

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows whether the processor runs

in ARM state or in Thumb state.

never set this bit

can be changed only in a privileged mode

USR 10000

FIQ 10001

IRQ 10010

SVC 10011

ABT 10111

UND 11011

SYS 11111

flags CPSR_f status CPSR_s extension CPSR_x control CPSR_c

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit
https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

Thumb Instruction
Programming

90 Young Won Lim
6/19/24

CPSR Bits (2)

https://www.keil.com/pack/doc/CMSIS/Core_A/html/group__CMSIS__CPSR.html

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

FI

Q Cumulative saturation bit

IT[1:0] if-Then exectuion state bits

for the Thumb IT (If-Then) instruction

J Jazelle bit

GE greater than or equal to flags

IT[7:2] if-Then exectuion state bits

for the Thumb IT (If-Then) instruction

 Q IT[1:0] J GE IT[7:2] E A

E Endianness execution state bit

 0 - Little-endian, 1 - Big-endian

A Asynchronous abort mask bit

https://www.keil.com/pack/doc/CMSIS/Core_A/html/group__CMSIS__CPSR.html

Thumb Instruction
Programming

91 Young Won Lim
6/19/24

MRS – Move to Register from Status

https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

● MRS is use to read
● from the CPSR or
● from the SPRS of the current mode

● It move the value from the status register
into a regular register.

● The SPSR that will be read is
the one that is active for the CPU’s current mode.

MRS R0, CPSR
MRS R1, SPSR

● Reading the SPSR while in user or system mode
is not valid and yields unpredictable results.

Thumb Instruction
Programming

92 Young Won Lim
6/19/24

MSR – Move to Status from Register

https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

● The MSR instruction is used to write
● to the CPSR or
● to the SPSR of the current mode.

● Writing to the SPSR while in the user or system mode
is not valid and the results are not predictable.

● Any writes to the CPSR in user mode are ignored.
● The CPSR can only be written to in a priveleged mode.

● MSR CPSR, R0
● MSR SPSR, R1

Thumb Instruction
Programming

93 Young Won Lim
6/19/24

64-bit Processors

A32 + T32 ISA’s
A64 ISA

Thumb Instruction
Programming

94 Young Won Lim
6/19/24

64-bit processor (1)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

ARMv7-A ARMv8-A

AARCH 32 AARCH 32 AARCH 64

ARM+Thumb ISAs A32+T32 ISAs A64 ISAs

ARMv7-A

AARCH32

ARM+Thumb ISAs

ARMv8-A

AARCH32

A32+T32 ISAs

ARMv8-A

AARCH64

A64 ISAs

Thumb Instruction
Programming

95 Young Won Lim
6/19/24

64-bit processor (1)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

ARMv7-A ARMv8-A

AARCH 32 AARCH 32 AARCH 64

ARM+Thumb ISAs

A32+T32 ISAs A64 ISAsTrustZone

VirtualizationExtn

LargePhysAddrExtn

Hard_Float

NEON

EL3, EL2, EL1 and EL0 exception hierarchy

CRYPTO CRYPTO

LD acquire/ST release: C1x/C++11 compliance

IEEE 754-2008 compliant floating point

AdvSIMD
(SP float)

AdvSIMD
(SP+DP float)

Thumb Instruction
Programming

96 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (5)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● there is a 32-bit execution state (AArch32) and
a 64-bit execution state (AArch64).

● the 32-bit execution state supports
two different instruction sets:
● T32 ("Thumb") and
● A32 ("ARM").

● The 64-bit execution state supports
only one instruction set - A64.

● All A64, like all A32, instructions are
32-bit (4 byte) in size, requiring 4-byte alignment.

● Many/most A64 instructions can operate
on both 32-bit and 64-bit registers
(or arguably 32-bit or 64-bit views
of the same underlying 64-bit register).

Thumb Instruction
Programming

97 Young Won Lim
6/19/24

ARM, Thumb, Thumb 2 instruction encodings (6)

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

● All ARMv8 processors (like all ARMv7 processors) that
implement AArch32 support Thumb-2 instructions in the
T32 instruction set.

● Not all ARMv8-A processors implement AAarch32,
and some don't implement AArch64.

● Some Processors support both,
but only support AArch32 at lower exception levels.

Thumb Instruction
Programming

98 Young Won Lim
6/19/24

64-bit processor (1)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

● Evolution of the ARM architecture

● The diagram shows how all the features present in
ARMv7-A have been carried forward into ARMv8-A.

● But ARMv8 supports two execution states:
● AArch32

the A32 and T32 instruction sets
(ARM and Thumb in ARMv7-A) are supported

● AArch64
the new A64 instruction set is introduced.

● Although backwards compatible with ARMv7-A,
the exception, privilege and security model
has been significantly extended and
is now classified as a set of exception levels,
EL0 to EL3, in a four-level hierarchy.

ARMv7-A

AARCH32

ARM+Thumb ISAs

ARMv8-A

AARCH32

A32+T32 ISAs,

AARCH64

A64 ISAs

Thumb Instruction
Programming

99 Young Won Lim
6/19/24

64-bit processor (2)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

● In AArch32,
the ARMv7-A Large Physical Address Extensions
are supported, providing
● 32-bit virtual addressing and
● 40-bit physical addressing.

● In AArch64,
this is extended, again in a backward compatible way,
to provide
● 64-bit virtual addresses and
● 48-bit physical address

● Other additions include cryptographic support
at instruction level.

ARMv7-A

AARCH32

ARM+Thumb ISAs

ARMv8-A

AARCH32,

A32+T32 ISAs,

AARCH64

A64 ISAs

Thumb Instruction
Programming

100 Young Won Lim
6/19/24

64-bit processor (3)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

● Overview of AArch64 in ARMv8-A

● The A64 instruction set, defined in AArch64,
has been designed from the ground up
as a clean, modern instruction set which operates
on 64-bit or 32-bit native datatypes or registers.

● A64 is a fixed-length instruction set
in which all instructions are 32 bits in length.

● It does, as you might expect, have many similarities
with the A32 instruction set which you’ll be familiar with
from earlier ARM architectures.

● There are some things you’ll find which are new and
some things which you’ll go looking for and aren’t there!

ARMv7-A

AARCH32

ARM+Thumb ISAs

ARMv8-A

AARCH32,

A32+T32 ISAs,

AARCH64

A64 ISAs

Thumb Instruction
Programming

101 Young Won Lim
6/19/24

64-bit processor (4)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

T32
Mixed 16- and 32-bit

instructions
32-bit GP regs

A32
32-bit instructions

32-bit GP regs

A64
32-bit instructions

32- and 64-bit GP regs

BX
BLX
MOV PC
LDR PC

Exception
Entry or
Exception
Return

Exception
Entry

Exception
Return

AARCH32 execution state AARCH64 execution state

Thumb Instruction
Programming

102 Young Won Lim
6/19/24

64-bit processor (5)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

Thumb
16-bit

instructions
32-bit GP regs

ARM
32-bit instructions

32-bit GP regs

BX
BLX
MOV PC
LDR PC

AARCH32 execution state

Thumb Instruction
Programming

103 Young Won Lim
6/19/24

64-bit processor (6)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

Changing Execution state and Instruction set

● A fully-populated ARMv8-A processor
supports both AArch32 and
Aarch64 execution states.

● Transition between the two is
always across an exception boundary.

● This differs from ARMv7-A
in which a change of instruction set is triggered
by an interworking branch (e.g. BLX).

Thumb
16-bit

instructions
32-bit GP regs

ARM
32-bit instructions

32-bit GP regs

BX
BLX
MOV PC
LDR PC

AARCH32 execution state

T32
Mixed 16- and 32-bit

instructions
32-bit GP regs

A32
32-bit instructions

32-bit GP regs

A64
32-bit instructions

32- and 64-bit GP regs

BX
BLX
MOV PC
LDR PC

Exception
Entry or
Exception
Return

Exception
Entry

Exception
Return

AARCH32 execution state AARCH64 execution state

Thumb Instruction
Programming

104 Young Won Lim
6/19/24

64-bit processor (7)

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit.pdf

Changing Execution state and Instruction set

● the relationship between
the T32, A32 and A64 instruction sets and

● the events which can cause a switch between them.

● the execution state
➢ can stay the same or
➢ go from 32-bit to 64-bit

• when taking an exception, or
• when returning from an exception

● This introduces a natural hierarchy
of 64-bit and 32-bit support at each level

ARMv7-A

AARCH32

ARM+Thumb ISAs

ARMv8-A

AARCH32,

A32+T32 ISAs,

AARCH64

A64 ISAs

T32
Mixed 16- and 32-bit

instructions
32-bit GP regs

A32
32-bit instructions

32-bit GP regs

A64
32-bit instructions

32- and 64-bit GP regs

BX
BLX
MOV PC
LDR PC

Exception
Entry or
Return

Exception
Entry

Exception
Return

AARCH32 execution state AARCH64 execution state

ARMv8-A

AARCH32

A32+T32 ISAs

ARMv8-A

AARCH64

A64 ISAs

Thumb Instruction
Programming

105 Young Won Lim
6/19/24

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

