First Order Logic – Semantics (3A)

pyright (c) 2016 - 2017 Young W. Lim.	
rmission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any lat ion published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is ided in the section entitled "GNU Free Documentation License".	ter s
se send corrections (or suggestions) to youngwlim@hotmail.com.	
document was produced by using LibreOffice	

Based on

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

Model

First specify a signature

Constant Symbols Predicate Symbols Function Symbols

Determines the language

Given a language
A model is specified
A domain of discourse
An interpretation

Model

- 1. a nonempty set D of **entities** called a **domain of discourse**
 - this domain is a set
 - each <u>element</u> in the set : <u>entity</u>
 - each constant symbol : one entity in the domain

2. an interpretation

- (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>. Normally, every entity is assigned to a constant symbol.
- (b) for each **function**, an <u>entity</u> is assigned to each possible <u>input of entities</u> to the **function**
- (c) the predicate '**True**' is always assigned the value T
 The predicate '**False**' is always assigned the value F
- (d) for every other **predicate**,

the value T or F is assigned to each possible <u>input of entities</u> to the **predicate**

Model

Constant assignment

(a) an entity \rightarrow the constant symbols.

Function assignments

(b) an entity \rightarrow each possible input of entities to the function

Truth value assignments

- (c) the value T → the predicate 'True' the value F → the predicate 'False'
- (d) for every other **predicate**, the value T or F is assigned → every other predicate to each possible <u>input of entities</u> to the **predicate**

Signature Model Examples

Signature

```
    constant symbols = { Mary, Fred, Sam }
    predicate symbols = { married, young }
    married(x, y) : arity two
    young(x) : arity one
```

Model

- 1. domain of discourse D: the set of three particular individuals
- 2. interpretation
 - (a) a different individual is assigned to each of the constant symbols
 - (b) the truth value assignments

```
young(Mary) = F, young(Fred) = F, young(Sam) = T
married(Mary, Mary) = F, married(Mary, Fred) = T, married(Mary, Sam) = F
married(Fred, Mary) = T, married(Fred, Fred) = F, married(Fred, Sam) = F
married(Sam, Mary) = F, married(Sam, Fred) = F, married(Sam, Sam) = F
```

Signature Model Examples

Signature

```
    constant symbols = { Fred, Mary, Sam }
    predicate symbols = { love } love(x, y) : arity two
    function symbols = { mother } mother(x) : arity one
```

Model

- 1. domain of discourse D: the set of three particular individuals
- 2. interpretation
 - (a) a different individual is assigned to each of the constant symbols
 - (b) the truth value assignments

```
love(Fred, Fred) = F, love(Fred, Mary) = F, love(Fred, Ann) = F
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T
love(Ann, Fred) = T, love(Ann, Mary) = T, love(Ann, Ann) = F
```

(c) the function assignments

```
mother(Fred) = Mary, mother(Mary) = Ann, mother(Ann) = - (no assignment)
```

Formal Language

The truth values of **all sentences** are assigned:

- 1. the truth values for sentences developed with the symbols \neg , \land , \lor , \Rightarrow , \Leftrightarrow are assigned as in propositional logic.
- 2. the truth value for two terms connected by the = symbol is T if both terms refer to the same entity; otherwise it is F
- 3. the truth value for $\forall x p(x)$ has value T if p(x) has value T for **every assignment** to x of an entity in the domain D; otherwise it has value F
- 4. the truth value for $\exists x \ p(x)$ has value T if p(x) has value T for **at least one assignment** to x of an entity in the domain D; otherwise it has value F
- 5. the operator precedence is as follows \neg , \equiv , \land , \lor , \Rightarrow , \Leftrightarrow
- 6. the **quantifiers** have precedence over the operators
- 7. **parentheses** change the order of the precedence

Formal Language

1. ¬, ∧, ∨, ⇒, ⇔

A \exists

- 2. = symbol
- 3. $\forall x p(x)$
- 4. $\exists x p(x)$
- 5. the **operator precedence** is as follows \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow
- 6. the quantifiers $\forall \exists$ have precedence over the operators
- 7. **parentheses** change the order of the precedence

Formal Language

Signature

A 3

Constant Symbols = {Socrates, Plato, Zeus, Fido} Predicate Symbols = {human, mortal, legs} all arity one

Model

 $\forall x \text{ legs}(x)$

D: the set of these four particular individuals Interpretation

(a) a different individual is assigned to each of the constant symbols

human(Zeus) \land human(Fido) \lor human(Socrates) T human(Zeus) \land (human(Fido) \lor haman(Socrates)) F \forall x human(x) \forall x mortal(x)

References

[1]	en.wikipedia.org
[2]	en.wiktionary.org
[3]	U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
[4]	http://www.learnprolognow.org/ Learn Prolog Now!
[5]	http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6]	www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7]	www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8]	http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog