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Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps
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● the things being quantified over are types 

(ignoring certain language extensions, at least), 

● logical statements are also types 

●  a "true" logical statement as "can be implemented".

● technically "false" should correspond to 

an uninhabited data type (often called Void)

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Haskell quantification 
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technically "false" should correspond to 

an uninhabited data type (often called Void) 

so "not (not A)" would be 

(A -> Void) -> Void -- useless 

Assume forall r. r stands for "false"

forall r. (A -> r) -> r -- can extract the A value, i.e. 

-- double-negation elimination. 

using r instead of Void  lets us get values back out. 

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical negation and forall 

A Void

Void

VoidA
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De Morgan's laws as applied to quantifiers; 

function inputs are negated, logically speaking. 

There's a similar equivalence between 

Either a b  … implicit universal quantification

forall r. (a -> r, b -> r) -> r 

which corresponds to "A or B" 

being the same as "not (not A) and (not B)".

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

De Morgan’s law and forall 

(  a -> r   ,    b -> r  )

(Not a) and (Not b) 

((  a -> r   ,    b -> r  )) ->    r

Not ((Not a) and (Not b)) 

any 
type a 

specific 
type r
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Look up the connection between logical double-negation 

and continuation-passing style if you want to know more

Due to duality, exists a. a can be expressed as 

forall r. (forall a. a -> r) -> r

Due to duality, forall a. a can be expressed as 

exists r. (exists a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical double negation and continuation passing style
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map ($ 2) [ (2*), (4*), (8*) ]

[ (2*) $ 2, (4*) $ 2, (8*) $ 2 ]

[4,8,16]

map (*2) [ 2, 4, 8 ]

[ (*2) 2, (*2) 4, (*2) 8 ]

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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map ($ 2) [ (2*), (4*), (8*) ]

[4,8,16]

map (*2) [ 2, 4, 8 ]

The ($) section makes the code appear backwards, 

as if we are applying a value to the functions 

rather than the other way around. 

such an reversal is at heart of 

continuation passing style! 

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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From a CPS perspective, ($ 2) is a suspended computation: 

a function with general type 

(a -> r) -> r 

given another function as argument, 

produces a final result. 

the a -> r argument is the continuation; 

it specifies how the computation will be brought to a conclusion. 

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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map ($ 2) [ (2*), (4*), (8*) ]

the functions in the list are supplied 

as continuations via map, producing three distinct results. 

note that suspended computations are largely 

interchangeable with plain values: 

flip ($) converts any value 

into a suspended computation, 

and passing id as its continuation 

gives back the original value. 

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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They make it possible 

to explicitly manipulate, 

and dramatically alter, 

the control flow of a program. 

For instance, returning early from a procedure 

can be implemented with continuations. 

Exceptions and failure can also 

be handled with continuations 

- pass in a continuation for success, 

- another continuation for fail, 

- and invoke the appropriate continuation. 

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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Other possibilities include suspending a computation 

and returning to it at another time, 

and implementing simple forms of concurrency 

(notably, one Haskell implementation, Hugs, 

uses continuations to implement cooperative concurrency).

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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In Haskell, continuations can be used in a similar fashion, 

for implementing interesting control flow in monads. 

Note that there usually are alternative techniques for such use cases, 

especially in tandem with laziness. 

In some circumstances, CPS can be used to improve performance 

by eliminating certain construction-pattern matching sequences 

(i.e. a function returns a complex structure which the caller will 

at some point deconstruct), 

though a sufficiently smart compiler should be able to do the elimination

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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An elementary way to take advantage of continuations 

is to modify our functions 

so that they return suspended computations 

rather than ordinary values. 

We will illustrate how that is done with two simple examples

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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Example: A simple module, no continuations

-- We assume some primitives add and square for the example:

add :: Int -> Int -> Int

add x y = x + y

square :: Int -> Int

square x = x * x

pythagoras :: Int -> Int -> Int

pythagoras x y = add (square x) (square y)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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Example: A simple module, using continuations

-- We assume CPS versions of the add and square primitives,

-- (note: the actual definitions of add_cps and square_cps are not

-- in CPS form, they just have the correct type)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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add_cps :: Int -> Int -> ((Int -> r) -> r)

add_cps x y = \k -> k (add x y)

square_cps :: Int -> ((Int -> r) -> r)

square_cps x = \k -> k (square x)

pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)

pythagoras_cps x y = \k ->

 square_cps x $ \x_squared ->

 square_cps y $ \y_squared ->

 add_cps x_squared y_squared $ k

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style) 
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fact x = 

  if x <= 1 then 1 else x * fact (x - 1)

 fact 4 

 4 * fact 3

 4 * (3 * fact 2)

 4 * (3 * (2 * fact 1))

 4 * (3 * (2 * 1))

 4 * (3 * 2)

 4 * 6

 24

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style) 

Each call of fact is made with the promise

that the value returned will be multiplied 

by the value of the parameter 

at the time of the call. 

Thus fact is invoked with larger and larger 

control contexts as the calculation 

proceeds.



Existential Types (1D) 20 Young Won Lim
9/5/21

fact_cps x k = 

  if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

 fact_cps 4 id

 fact_cps 3 (\v -> id (4 * v)) 

 fact_cps 2 (\v' -> (\v -> id (4 * v)) (3 * v'))

 fact_cps 1 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v''))

 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v'')) 1

 (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * 1)

 (\v -> id (4 * v)) (3 * (2 * 1))

 id (4 * (3 * (2 * 1)))

 (4 * (3 * (2 * 1)))

 24

using 'id' as the first continuation.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style) 

the control context is made explicit 

in the continuation argument to fact_cps. 

we never have a call to fact_cps 

that is the argument 

to some other computation. 

Instead, each step remembers 

what to do with the result 

as a first-class function. 

At the bottom of the recursion, 

these continuations are evaluated.
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When is a function written in continuation passing style?

    No function call is allowed to return to its caller, ever. 

Instead, it must always pass its result directly 

to an explicit continuation.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style) 
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    Every function takes an extra argument (a callback) 

and passes its return value this callback.

    When a function is ready to "return", 

it invokes the "current continuation" callback 

(provided by its caller) on the return value.

    When calling functions written in CPS-style, 

callers must also provide the "continuation", i.e. 

a function that says what to do 

with the result of the function call.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style) 



Existential Types (1D) 23 Young Won Lim
9/5/21

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

forall r. (a -> r) -> r

forall r. (forall a. a -> r) -> r

exists a. a  

think a callback function forall a. a -> r

forall a. a -> Int

forall a. a -> String a caller chooses type r

forall a. a -> Double

The caller of the overall function 

(a -> r) -> r 

chooses any type r

The body of the overall function 

(a -> r) -> r 

chooses any type a

the body of the callback function

must handle for all type a
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id :: forall a. a -> a

id x = x

for any possible type a, quantified over types

a function whose type is a -> a 

can be implemented a true logical statement

id works for all a. 

a will unify with (or will be fixed to) any type 

that caller of id may choose.

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

id function example

universally quantified type variables

in a type signature are

existentially quantified 

in a function body
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universally quantified type variables in a type signature

will be fixed when the corresponding function 

is used (called)

in a type signature, a is universally quantified 

but in the body of the function

we know nothing about the argument a, 

we cannot inspect the argument a  

      

(a is fixed when the function is used)

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

A type signature and a function body

id :: forall a. a -> a

id x = x

universally quantified type variables

existentially quantified in a function body
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universally quantified type variables in a type signature

 

callers can pass (choose) anything to id 

but due to the lack of information 

about the argument in the body of id

a caller can only pass a value to id

without doing anything meaningful 

So, id x = x is the only possible function of the type  a -> a

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Lack of information in a function body

id :: forall a. a -> a

id x = x

a caller chooses values for 

universally quantified variables

in the body of a such function, 

must handle any type values 

which is given by a caller : 

existentially quantified variable
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An existentially quantified type could be better explained  

using the fictitious exists a. syntax

exists a. a -> a 

for a certain type a, 

we can implement a function whose type is a -> a. 

any function will do, 

then the “not” function on Bool satisfies the type a -> a

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Fictitious syntax exists a. 

func :: exists a. a -> a

func True = False

func False = True



Existential Types (1D) 28 Young Won Lim
9/5/21

the function implementation on booleans 

func :: exists a. a -> a

func True = False

func False = True

but we cannot use (apply) it as the “not“ function 

because all we know about the type a is 

that it exists. 

Any information about which type it might be 

has been discarded (i.e, is not used), 

this means we can't apply func to any values

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Function implementations and applications

Existentials are always about 

throwing type information away. 

sometimes we want to work with types 

that we don’t know at compile time. 
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in pseudo-Haskell:

    (exists x. p x x) -> c  ≅ forall x. p x x -> c

a function p that takes an existential type x 

is equivalent to a polymorphic function 

using a universal quantifier forall x

because the function p must be prepared 

to handle any one of the types x

that may be encoded in the existential type. exists x.

Haskell does not need an existential quantifier 

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 
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a function that accepts a sum type must be implemented as 

a case statement, with a tuple of handlers, 

one for every type present in the sum. 

Here, the sum type is replaced by a coend, 

and a family of handlers becomes an end, 

or a polymorphic function.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 
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This fact brings us back to universal quantifiers, 

and the reason why Haskell doesn't have existential types directly 

(exists a. above is entirely fictitious) 

since things with existentially quantified types 

can only be used with operations 

that have universally quantified types, 

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

No direct existential types

● for the callers of myPrettyPrinter 

b is existentially quantified 

● in the body of myPrettyPrinter  

b is universally quantified 
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universal quantification is the default

any type variables in a type signature are 

implicitly universally quantified, 

id ::  a -> a

id :: forall a. a -> a

also known as parametric polymorphism 

in some other languages (e.g., C#) known as generics.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Parametric polymorphism (1)
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Parametric polymorphism refers to 

when the type of a value contains 

one or more (unconstrained) type variables,

beginning with a lowercase letter

without constraints (nothing to the left of a =>)

so that the value may adopt any type 

that results from substituting those type variables 

with concrete types. 

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (2)

data Maybe a = Just a | Nothing

Just 2.0 :: Maybe Double

Just 'a'      :: Maybe Char

Just True  :: Maybe Boolean
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Polymorphic datatypes

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Either a b = Left a  Right b

Polymorphic functions

reverse :: [a] -> [a]

fst :: (a, b) -> a

id :: a -> a

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Parametric polymorphism (3)

Just 2.0 :: Maybe Double

Just 'a'      :: Maybe Char

Just True  :: Maybe Boolean
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Since a parametrically polymorphic value does not know 

anything about the unconstrained type variables, 

it must behave identically for all type (regardless of its type) 

(related to universally quantification)

This is a somewhat limiting but extremely useful property 

known as parametricity. 

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (4)

data Maybe a = Nothing | Just a

reverse :: [a] -> [a]
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the function id :: a -> a contains 

an unconstrained type variable a in its type, 

and so can be used in a context requiring 

Char -> Char or 

Integer -> Integer or 

(Bool -> Maybe Bool) -> (Bool -> Maybe Bool) or 

any of a literally infinite list of other possibilities. 

if a single type variable appears multiple times, 

it must take the same type everywhere it appears

→ the result type of id must be the same as the argument type

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (5)
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A variable is universally quantified 

when the consumer of the variable’s expression 

can choose what it will be.

A variable is existentially quantified 

when the consumer of the variable’s expression

has to deal with the fact that the choice was made for him.

https://markkarpov.com/post/existential-quantification.html

Quantified variable choice

Universally quantified variable:

the consumer chooses a value

Existentially quantified variable:

the choice is made for the consumer

callers of a 
function

the body of 
such a function

consumers of a function
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Both universally and existentially quantified variables 

are introduced with forall. 

There is no exists in Haskell. 

In fact, it’s not necessary.

https://markkarpov.com/post/existential-quantification.html

Quantified variables with forall



Existential Types (1D) 39 Young Won Lim
9/5/21

data Something where

  Something :: forall a.  a -> Something

one way to have existentials – 

by putting values in wrappers 

that “hide” type variables from signatures.

  Something  a :: Something

 the type variable a is hidden in the type Something

https://markkarpov.com/post/existential-quantification.html

Making existentials – hiding type variables
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data Something where

  Something :: forall a.   a -> Something

  Something  a :: Something

  Something 2.0 :: Something 

  Something 'a'        :: Something 

  Something True      :: Something 

the constructor function Something return 

data value of type Something

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – data and type constructors

data Point a = Pt a a

Pt  2.0  3.0       :: Point Float

Pt  'a'  'b'            :: Point Char

Pt True False :: Point Bool

data constructor

type constructor +
bounded type parameter
: a concrete type

polymorphic type 

type constructor
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data Something where

  Something :: forall a.   a -> Something

  findx :: Something -> Float

  findx (Something x) -> x

The constructor accepts any a we like, 

but after construction we 

lose the type information 

and pattern matching afterwards only reveals 

that there is some a, 

but nothing regarding what it is.

 

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – pattern matching

data Point a = Pt a a

pointx :: Point Float -> Float

pointx (Pt x _) = x 

pointy :: Point Float -> Float

pointy (Pt  _ y) = y 



Existential Types (1D) 42 Young Won Lim
9/5/21

data Something where

  Something :: forall a.   a -> Something

the constructor function Something return 

existentially quantified data of type Something

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – constructing and using a value

Something a       :: Something 

a data value is 
constructed 

a data value is 
used

universally 
quantified

existentially 
quantified aa

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

a function parameter, 
pattern matching
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● passing a value to id: (universally quantified)

we can pass anything to id but we lack any information 

about the argument in the body of id.

● passing a value to Something  (existentially quantified)

existential wrappers 

➔ return existentially quantified data from a function. 

➔ avoid unification of existentials with outer context 

➔ avoid escaping of type variables.

https://markkarpov.com/post/existential-quantification.html

Returning existentially quantified data

id 1 :: Int 

id ‘a’ :: Char 

Id 2.0 :: Double

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

findx (Something x) -> x

not possible !!!

cannot extract type variable a
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● passing a value to id: (universally quantified)

universally quantified variable

the consumer chooses

id :: forall a. a -> a

● passing a value to Something  (existentially quantified)

existentially quantified variable

the choice is made for the consumer

data Something where

Something :: forall a.   a -> Something

https://markkarpov.com/post/existential-quantification.html

Returning existentially quantified data

id Int :: Int 

id Char :: Char 

id Double :: Double

example consumer function

foo :: Something -> Int

foo x = … 

 x :: Something

type variable a is already chosen

could be one of these

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something
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data Something where

  Something :: forall a.   a -> Something

data r where

  r :: forall a.   a -> r

forall r. ( forall a.   a -> r  ) -> r
 Assume the callback function name is r 

the type variable a is hidden in the type r 

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – similar forms

Something 1 :: Something
Something ’a’ :: Something
Something 2.0 :: Something

r    1 :: r
r    ’a’ :: r
r    2.0 :: r

r    1 :: Int
r    ’a’ :: Int
r    2.0 :: Int 

r    1 :: Char
r    ’a’ :: Char
r    2.0 :: Char 

r    1 :: Double
r    ’a’ :: Double
r    2.0 :: Double 



Existential Types (1D) 46 Young Won Lim
9/5/21

data Something where

  Something :: forall a.   a -> Something

data r where

  r :: forall a.   a -> r

forall r. ( forall a.   a -> r  ) -> r
 Assume the callback function name is r 

the type variable a is hidden in the type r 

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – similar forms

   r a       :: r 

a data value is 
constructed 

a data value is 
used 

universally 
quantified

existentially 
quantified aa
the type variable a 
is hidden in the type r
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https://markkarpov.com/post/existential-quantification.html

Existential wrappers – rank-2 type 

Inner level        Outer level

callback function
body 

callback function
as an argument

universally 
quantified

existentially 
quantified aaexponentially 

quantified a

universally 
quantified a

argument callbackforall r.        -> r

(forall a. a -> r)

forall r. ( forall a.   a -> r  ) -> r

Outer level

Inner level
the type variable a 
is hidden in the type r
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we can write the type 

exists a. a

as 

forall r. (forall a. a -> r) -> r

for all result types r, 

given a function a -> r

that takes an argument of type a, for all types a 

and returns a value of type r, 

we can get a result of type r

a caller supplies the callback function of the type a -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

a r 

A caller supplies the callback function
with the type a -> r
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we can write the type 

exists a. a

as 

forall r. (forall a. a -> r) -> r

a caller supplies the callback function of the type a -> r

for a given type r

 forall a. a -> Int

 forall a. a -> String a caller chooses type r

 forall a. a -> Double

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

a String

any 
type a 

specific 
type r

a caller of the overall type 
determines the specific type r

Int

Double 
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     forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

any 
type a 

specific 
type r

a caller of the overall type function 
chooses the specific type r

The body of the overall type function 
must handle any type r

universally 
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     forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 
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Existential types and forall 

forall r. (forall a. a -> r) -> r

specific 
type a 

the overall type can choose 
whatever specific type r 

existentially 
quantified a

universally 
quantified r

forall r. (forall a. a -> r) -> r

specific 
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the callback function type can 
choose whatever specific type a 
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overall function type callback function type
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is a callback function
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we can write the type 

exists a. a  

as 

forall r. (forall a. a -> r) -> r

the overall type is not universally quantified for a 

only its argument (forall a. a -> r) is universally quantified for a

The overall type takes an argument  … (forall a. a -> r)

that itself is universally quantified for a, 

The overall type can then use 

with whatever specific type r it chooses.

  

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

The overall type can choose 
whatever specific type r 
Universally quantified

for the callers 
of the function
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quantified

existentially 
quantified

r
a

r
a
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data Foo = forall a. MkFoo a (a -> Bool)  |   Nil

the data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo

Nil   :: Foo

Notice that the type variable a does not appear 

in the type of MkFoo and

in the data type itself, Foo

Hidden 

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (1)

MkFoo 3 even :: Foo

MkFoo 'c' isUpper :: Foo

even ::  Integer -> Bool

isUpper ::  Char -> Bool



Existential Types (1D) 55 Young Won Lim
9/5/21

MkFoo :: forall a. a -> (a -> Bool) -> Foo

a valid expression example

  [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

(MkFoo 3 even) packages an integer with a function 

(MkFoo 'c' isUpper) packages a character with a function

Each of these are of type Foo and can be put in a list.

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (2)

even ::  Integer -> Bool

isUpper ::  Char -> Bool
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What can we do with a value of type Foo?. 

In particular, what happens when we pattern-match on MkFoo?

  f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible, 

the only (useful) thing we can do with them is 

to apply fn to val to get a boolean.

cannot extract val and fn 

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (3)

f :: Foo -> Bool

fn ::  a -> Bool

f (MkFoo val fn) = fn val
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data Foo = forall a. MkFoo a (a -> Bool)  |   Nil

MkFoo :: forall a. a -> (a -> Bool) -> Foo

  [MkFoo 3 even,    MkFoo 'c' isUpper] :: [Foo]

What this allows us to do is 

to package heterogenous values together 

with a bunch of functions that manipulate them, 

and then treat that collection of packages in a uniform manner. 

In this way, you can express object-oriented-like programming

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (4)

fn ::  a -> Bool

even ::  Integer -> Bool

isUpper ::  Char -> Bool
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Existentials have always to do with 

throwing type information away. 

sometimes we want to work with types 

that we don’t know at compile time. 

the types typically depend on the state of external world: 

the types could depend on user’s input, 

on contents of a file to be parsed, etc. 

Haskell’s type system is powerful enough in these cases

https://markkarpov.com/post/existential-quantification.html

Unknown types at compile time
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We want to work with values of types 

that we don’t know at compile time, 

but at run time there are no types at all: 

they have been erased!

then we have to preserve some information 

about existentially quantified type to make use of it, 

otherwise we’ll be in the same position as implementers of id 

having a value and only being able to pass it around 

never doing anything meaningful with it.

There are various degrees of how much we might want to preserve:

https://markkarpov.com/post/existential-quantification.html

Preserving information about existentials
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We could have a in the type [a] existentially quantified. 

There are still some things we could do with a value of this type. 

we could compute length of the list. 

So knowing nothing about a type is also an option sometimes 

when it parameterizes another type and 

we have parametrically-polymorphic functions 

that work on that type. 

In this case the set of possible types for a is open i.e. it can grow.

https://markkarpov.com/post/existential-quantification.html

Parameterizing another type
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data Showable where

  Showable :: forall a. Show a => a -> Showable

We could assume that the existentially quantified type 

has certain properties (instances):

● pattern-matching on Showable will give us 

the corresponding dictionary back. 

● can do as much as the knowledge about the attached constraint 

● the set of possible types for a is open 

(additional new instances of Show can be defined).

https://markkarpov.com/post/existential-quantification.html

Existentially quantified type with constraints

data Something where

  Something :: forall a. a -> Something

simple existentially quantified type variable
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myPrettyPrinter

  :: forall a. Show a =>

(forall b. Show b => b -> String) 

  -> Int

  -> Bool

  -> a

  -> String

Only variables with foralls at the beginning of type signature 

will be fixed when the corresponding function is used

Other foralls deal with independent type variables:

https://markkarpov.com/post/existential-quantification.html

The first forall at the type signature

forall a. ***  (forall b. *** )

when myPrettyPrinter is used

a will be fixed  

but not b

the 1st argument is 

a call back function

b -> String
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myPrettyPrinter

  :: forall a. Show a => 

(forall b. Show b => b -> String)    -- call back function

  -> Int

  -> Bool

  -> a

  -> String

https://markkarpov.com/post/existential-quantification.html

Two levels of foralls

two levels of foralls  (rank-2 type)

 forall a. ***  (forall b. *** )

in general such constructions 

are called rank-N types.
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Both universally and existentially quantified variables 

are introduced with forall. 

for callers of myPrettyPrinter

● a is universally quantified 

we can choose what the type will be

● b is existentially quantified 

the callback function has to prepare to deal with any b 

that will be given to the callback b -> String

https://markkarpov.com/post/existential-quantification.html

For consumers of a function 

myPrettyPrinter

  :: forall a. Show a =>

(forall b. Show b => b -> String) 

  -> Int

  -> Bool

  -> a

  -> String

callers of myPrettyPrinter provide 

the call back b -> String

which must handle any b 
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https://markkarpov.com/post/existential-quantification.html

For consumers of a function 

myPrettyPrinter

  :: forall a. Show a =>

(forall b. Show b => b -> String) 

  -> Int

  -> Bool

  -> a

  -> String

myPrettyPrinter fn i t x = 

   ... fn 0.8    … 

return str

print (myPrettyPrinter  callback 123 True ) 

Consumers of the expression 1

  

Consumers of the expression 2

  

fn :: b -> String

i :: Int

t :: Bool

x :: a

str :: String
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● for the callers of myPrettyPrinter, a is universally quantified

● in the body of myPrettyPrinter, a is existentially quantified 

➔ the caller of myPrettyPrinter already has chosen the type 

➔ A specific return type of the callback  function b -> String

● for the callers of myPrettyPrinter, b is existentially quantified 

● in the body of myPrettyPrinter, b is universally quantified 

➔ b is the first argument of the call back function b -> String 

➔ when the call back function is applied with b

the body of myPrettyPrinter can choose its concrete type

b -> String-> Int -> Bool-> a-> String

https://markkarpov.com/post/existential-quantification.html

In the body of a function

myPrettyPrinter

  :: forall a. Show a =>

(forall b. Show b => b -> String) 

  -> Int

  -> Bool

  -> a

  -> String

Universally quantified variable

the consumer choose

Existentially quantified variable

the choice is made for the consumer
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forall r. 

      (forall a. a -> r) 

    -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

myPrettyPrinter

  :: forall a. Show a =>

(forall b. Show b => b -> String) 

  -> Int

  -> Bool

  -> a

  -> String

for the callers 
of the function

in the body of 
the function

universally 
quantified

existentially 
quantified

universally 
quantified

existentially 
quantified

a
b

a
b

callers of myPrettyPrinter provide 

the call back function b -> String

which must handle any b 

for the callers 
of the function
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quantified

existentially 
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r
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subtyping (also subtype polymorphism) 

is a form of type polymorphism in which a subtype is a datatype 

that is related to another datatype (the supertype) 

by some notion of substitutability, 

meaning that program elements, 

typically subroutines or functions, 

written to operate on elements of the supertype 

can also operate on elements of the subtype.

https://en.wikipedia.org/wiki/Subtyping

Subtyping
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Haskell doesn't have a notion of subtyping 

Quantifiers can be considered as a tool for subtyping, 

with a hierarchy going from universal to concrete to existential. 

type forall a. a could be converted to any other type, 

so it could be seen as a subtype of everything; 

any type could be converted to the type exists a. a, 

making that a supertype of everything. 

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

forall a. a

any type

exists a. a

universal

concrete

existential
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forall a. a is impossible 

there are no values of type forall a. a except errors 

exists a. a is useless 

you canot do anything with the type exists a. a 

but the analogy works on paper at least. 

So, the basic idea is roughly that 

universally quantified types describe 

things that work the same for any type, 

existentially quantified types describe 

things that work with a specific but unknown type.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

forall a. a

any type

exists a. a

subtype of 
everything

supertype of 
everything

impossible – 
no such value

useless –  
cannot do anything
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data EType a where

      ETypeWord8  :: EType Word8

      ETypeInt    :: EType Int

      ETypeFloat  :: EType Float

      ETypeDouble :: EType Double

      ETypeString :: EType String

data Something where

      Something :: EType a -> a -> Something

 We could use GADTs to restore exact types of 

existentially quantified variables later:

    

https://markkarpov.com/post/existential-quantification.html

Restoring exact types
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Matching on one of the data constructors of EType 

reveals a and after that we are free to do anything 

with the value of corresponding type 

because we know it.

With this approach the set of possible types for a 

is limited and closed. 

It can be expanded 

by changing the definition of EType though.

https://markkarpov.com/post/existential-quantification.html

How to make use of existentials

data EType a where

      ETypeWord8  :: EType Word8

      ETypeInt    :: EType Int

      ETypeFloat  :: EType Float

      ETypeDouble :: EType Double

      ETypeString :: EType String

data Something where

      Something 

:: EType a -> a -> Something
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Generalised Algebraic Data Types 

generalise ordinary algebraic data types 

by allowing you to give the type signatures of constructors explicitly. 

data Term a where

      Lit    :: Int -> Term Int

      Succ   :: Term Int -> Term Int

      IsZero :: Term Int -> Term Bool

      If     :: Term Bool -> Term a -> Term a -> Term a

      Pair   :: Term a -> Term b -> Term (a,b)

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/gadt.html

Generalized Algebraic Data Type (1)
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Notice that the return type of the constructors is not always Term a, 

as is the case with ordinary vanilla data types. 

Now we can write a well-typed eval function for these Terms:

  eval :: Term a -> a

  eval (Lit i)     = i

  eval (Succ t)     = 1 + eval t

  eval (IsZero t)   = eval t == 0

  eval (If b e1 e2) = if eval b then eval e1 else eval e2

  eval (Pair e1 e2) = (eval e1, eval e2)

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/gadt.html

Generalized Algebraic Data Type (2)
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Existential Quantification  

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
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Existential types, or 

Existentials for short, 

provide a way of  

squashing a group of types 

into one, single type.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials
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Existentials are part of GHC's type system extensions. 

But not part of Haskell98

have to either compile with a command-line parameter of 

-XExistentialQuantification, 

or put at the top of your sources that use existentials. 

{-# LANGUAGE ExistentialQuantification #-} 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials
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The forall keyword is to explicitly bring fresh type variables into scope

type variables : 

those variables that begin with a lowercase letter 

the compiler allows any type to fill these variables 

those variables that are universally quantified

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall and type variables
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Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

a lowercase type parameter 

implicitly begins with a forall keyword,

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

two type declarations for map are equivalent

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type variables in a polymorphic function
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Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

instantiating the general type of map 

to a more specific type

a = Int 

b = String     

(Int -> String) -> [Int] -> [String] 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Instantiating type variables
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Hiding a type variable  

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
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Normally when creating a new type 

using type, newtype, data, etc., 

every type variable that appears on the right-hand side 

must also appear on the left-hand side. 

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping this rule

Existential types can be used for several different purposes. 

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

A rule for creating a new type



Existential Types (1D) 83 Young Won Lim
9/5/21

Normally, any type variable appearing on the right 

must also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type b of the buffer 

is not specified on the right  

(b is a type variable rather than a type) 

but also is not specified on the left 

(there's no b in the left part). 

In Haskell98, you would have to write 

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Not specifying a type variable

Record Access Functions
buffer :: Worker x y -> b
input :: Worker x y -> x 
output :: Worker x y -> y
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data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

However, suppose that a Worker can use any type b 

so long as it belongs to some particular class. 

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this: 

https://wiki.haskell.org/Existential_type

A type variable and a class
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Explicit type signature :

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

foo :: (Buffer b) => Worker b Int Int

Existential type :

data Worker x y =  forall b. Buffer b =>   Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear 

in the Worker type at all. Worker x y

https://wiki.haskell.org/Existential_type

Explicit types and Existential types
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The monomorphism restriction is a counter-intuitive rule 

in Haskell type inference. 

If you forget to provide a type signature, 

sometimes this rule will fill the free type variables 

with specific types using type defaulting rules. 

always less polymorphic than you'd expect, 

so often this results in type errors  

when you expected it to infer a perfectly sane type 

for a polymorphic expression. 

https://wiki.haskell.org/Existential_type

Monomorphism restriction
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A simple example is plus = (+). 

Without an explicit signature for plus, 

the compiler will not infer the type for plus

(+) :: (Num a) => a -> a -> a 

but will apply defaulting rules to specify 

plus :: Integer -> Integer -> Integer 

When applied to plus 3.5 2.7, GHCi will then produce 

the somewhat-misleading-looking error, 

No instance for (Fractional Integer) arising from the literal ‘3.5’. 

https://wiki.haskell.org/Existential_type

Monomorphism restriction example
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func is a function with the same type for its input and output 

so we could compose it with itself, for example. 

the only things you can do with something 

that has an existential type are 

the things you can do based on the non-existential parts of the type. 

Similarly, given something of type exists a. [a] 

we can find its length, or concatenate it to itself, 

or drop some elements, or anything else we can do to any list.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 

func :: exists a. a -> a

func True = False

func False = True
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an example of an existentially quantified type 

data Sum = forall a. Constructor a    

forall a. (Constructor_a:: a -> Sum)  Constructor:: (exists a. a) -> Sum≅

data Sum = int | char | bool | .... 

an example of a universally quantified type 

data Product = Constructor (forall a. a)

data Product = int char bool ....

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall 
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● it is now impossible for a function 

to demand a Worker having a specific type of buffer.

 

● the type of foo can now be derived automatically 

without needing an explicit type signature. 

(No monomorphism restriction.) 

● since code now has no idea 

what type the buffer function returns, 

you are more limited in what you can do to it. 

data Worker x y =  forall b. Buffer b =>   Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (5)
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you will usually want a hidden type to belong to a specific class, 

or you will want to pass some functions along 

that can work on that type.

 

Otherwise you'll have some value belonging 

to a random unknown type, 

and you won't be able to do anything to it!

data Worker x y =  forall b. Buffer b =>   Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (6)
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This illustrates creating a heterogeneous list, 

all of whose members implement Show 

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'" 

https://wiki.haskell.org/Existential_type

Hiding a type variable (7)
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In Haskell, an existential data type is one 

that is defined in terms not of a concrete type, 

but in terms of a quantified type variable, 

introduced on the right-hand side of the data declaration. 

https://blog.sumtypeofway.com/posts/existential-haskell.html

Hiding a type variable (7)
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an existential type provides 

a well-typed "box" around an unspecified type. 

The box does "hide" the type in a sense, 

which allows you to make a heterogeneous list of such boxes, 

ignoring the types they contain. 

It turns out that an unconstrained existential pretty useless, 

but a constrained type allows you to pattern match 

to peek inside the "box" and make the type class facilities available:

https://blog.sumtypeofway.com/posts/existential-haskell.html

Hiding a type variable (7)
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Note: You can use existential types 

to convert a more specific type 

into a less specific one.

constrained type variables 

There is no way to perform the reverse conversion! 

https://wiki.haskell.org/Existential_type

Less specific types 
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It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration) 

forall r. (forall a. Show a => a -> r) -> r

(the leading forall r. is optional 

unless the expression is part of another expression). 

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (1)
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The conversions are:

fromObj ::  Obj -> forall r. (forall a. Show a => a -> r) -> r

fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Show a => a -> r) -> r)  ->  Obj

toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (2)
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Heterogeneous Lists

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
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Suppose we have a group of values. 

they may not be all the same type, 

but they are all members of some class 

thus, they have a certain property 

It might be useful to throw all these values into a list. 

normally this is impossible because lists elements 

must be of the same type 

(homogeneous with respect to types). 

existential types allow us to loosen this requirement 

by defining a type hider or type box: 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type hider 

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]
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data ShowBox = forall s. Show s => SB s -- type hider

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

[SB (), SB 5, SB True] calls the constructor 

on three values of different types,

to place them all into a single list 

virtually the same type for each one. 

Use the forall in the constructor 

SB :: forall s. Show s => s -> ShowBox. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (1)
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data ShowBox = forall s. Show s => SB s -- type hider

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

When passing heteroList type parameters to a function

we cannot take out the values inside the SB 

because their type might Bool. Int, Char, …  

But each of the elements can be  

converted to a string via show. 

In fact, that's the only thing we know about them. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (2)
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 instance Show ShowBox where

  show (SB s) = show s        

In the definition of show for ShowBox 

we don't know the type of s. 

But we do know that the type is an instance of Show 

due to the constraint on the SB constructor. 

Therefore, it's legal to use the function show on s, 

as seen in the right-hand side of the function definition. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (3)

ShowBox data type made into 

an instance of the Show class

by this instance declaration: 
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instance Show ShowBox where

  show (SB s) = show s        

 f :: [ShowBox] -> IO ()

 f xs = mapM_ print xs

main = f heteroList

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (4)
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Example: Using our heterogeneous list

instance Show ShowBox where

  show (SB s) = show s        

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (5)
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mapM maps an "action" (ie function of type a -> m b) 

over a list [a] and gives you all the results as m [b] 

mapM_ does the same thing, 

but never collects the results, returning a m ().

If you care about the results 

of your a -> m b function, use mapM. 

If you only care about the effect, 

but not the resulting value, 

  use mapM_, because it can be more efficient 

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (1)
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Always use mapM_ with functions of the type a -> m (), 

like print or putStrLn. 

these functions return () to signify that only the effect matters. 

If you used mapM, you'd get a list of () (ie [(), (), ()]), 

which would be completely useless 

but waste some memory. 

If you use mapM_, you would just get a (), 

but it would still print everything.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (2)
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Normal map is something different: 

it takes a normal function (a -> b) 

instead of one using a monad (a -> m b). 

This means that it cannot have any sort of effect 

besides returning the changed list. 

You would use it if you want to transform a list 

using a normal function. 

map_ doesn't exist because, since you don't have any effects, 

you always care about the results of using map.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (3)
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Quantified types 

as products and sums

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
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A universally quantified type may be interpreted 

as an infinite product of types. 

a polymorphic function can be understood 

as a product, or a tuple, of individual functions, 

one per every possible type a. 

To construct a value of such type, we have 

to provide all the components of the tuple at once. 

-- one formula generating an infinity of functions

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums
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Example: Identity function

 id :: forall a. a -> a

 id a = a

a polymorphic function can be understood 

as a product, or a tuple, of individual functions, 

one per every possible type a. 

Int -> Int, 

Double -> Double,

Char -> Char, 

[Char] -> [Char],

… 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums
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To construct a value of such type, we have 

to provide all the components of the tuple at once. 

in case of numeric types, one numeric constant 

may be used to initialize many types at once. 

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0

x may be conceptualized as a tuple consisting 

of an Int value, a Double value, etc. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums
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Similarly, an existentially quantified type may be interpreted 

as an infinite sum. 

Example: Existential type

 data ShowBox = forall s. Show s => SB s -- type hider

may be conceptualized as a sum: 

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums
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Example: Existential type

 data ShowBox = forall s. Show s => SB s -- type hider

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

to construct a value of this type, 

we only have to pick one of the constructors

(SBUnit, SBInt, SBBool, SBIntList ...) 

A polymorphic constructor SB 

combines all those constructors into one. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums



Existential Types (1D) 114 Young Won Lim
9/5/21

Quantification as a primitive 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do



Existential Types (1D) 115 Young Won Lim
9/5/21

Existential quantification is useful 

for defining data types that aren't already defined. 

Suppose there was no such thing as pairs built into haskell. 

Existential quantification could be used to define them. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (1)
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{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

Defining a data type c that is not already defined

 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (2)

Pair $ \f -> f a b :: Pair a b

f :: a -> b -> c

f a b :: c 

f is not yet defined

c can be any type  (forall c)
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newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

 

every type variable that appears on the right-hand side 

must also appear on the left-hand side. 

Existential type hides a type variable c on the right-hand side.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (3)
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newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (4)

f

a 

b 
c

f a b 

Pair $ \f -> f a b :: Pair a b

a 

b makePair Pair a b

P
a

ir



Existential Types (1D) 119 Young Won Lim
9/5/21

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

using a record type with a single field

newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

runPair is an access function

takes an input of the type Pair a b

returns an output of the type forall c. (a -> b -> c) -> c

 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (5)
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In GHCI

λ> :set -XExistentialQuantification

λ> :set -XrankNTypes

λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

λ> makePair a b = Pair $ \f -> f a b

λ> pair = makePair "a" 'b' 

λ> :t pair

 pair :: Pair [Char] Char

λ> runPair pair (\x y -> x)  -- unwrap (a -> b -> c) -> c then apply

 "a"

λ> runPair pair (\x y -> y) -- unwrap (a -> b -> c) -> c then apply

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (6)

f

a 

b 
c

f a b 

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b' 

Pair $ \f -> f  "a"  'b'  :: Pair a b

a 

b makePair Pair a b

P
a

ir

“a” 

‘b’ 

f “a” ‘b’
“a” 

‘b’ 
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λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

λ> makePair a b = Pair $ \f -> f a b

λ> pair = makePair "a" 'b' 

 

Pair $ \f -> f "a" 'b'

\f : function itself f :: a -> b -> c

f "a" 'b' : the result of  applying the function

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (7)

f

a 

b 
c

f a b 

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b' 

Pair $ \f -> f  "a"  'b'  :: Pair a b

a 

b makePair Pair a b

P
a

ir

“a” 

‘b’ 

f “a” ‘b’
“a” 

‘b’ 
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newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

runPair ::  Pair a b -> forall c. (a -> b -> c) -> c

makePair a b = Pair $ \f -> f a b

runPair makePair a b = \f -> f a b -- unwrapping

makePair "a" 'b'  = Pair $ \f -> f "a" 'b'

runPair makePair "a" 'b' = \f -> f "a" 'b'

pair = makePair :: Pair [Char] Char

runPair  pair  (\x y -> x) = (\x y -> x) "a" 'b'

runPair  pair  (\x y -> y) = (\x y -> y) "a" 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (8)

f

a 

b 
c

f a b 

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b' 

Pair $ \f -> f  "a"  'b'      :: Pair a b

a 

b makePair Pair a b

P
a

ir

“a” 

‘b’ 

f “a” ‘b’
“a” 

‘b’ 
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runPair  pair  (\x y -> x) = (\x y -> x) "a" 'b'

runPair  pair  (\x y -> y) = (\x y -> y) "a" 'b'

runPair makePair "a" 'b' (\x y -> x)  

(\x y -> x) "a" 'b'

 "a"

runPair makePair "a" 'b' (\x y -> y)  

(\x y -> y) "a" 'b'

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (9)
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https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (10)

f

a 

b 
c 

c 

Pair $ \f -> f a b :: Pair a b

pair (\x y -> y)

makePair "a" 'b' (\x y -> y)

a 

b makePair Pair a b“a” 

‘b’ 

“a” 

‘b’ 
“a” 

‘b’

“a” 

(\x y -> y)

f

a 

b 
c 

c 

Pair $ \f -> f a b :: Pair a b

pair (\x y -> x)

makePair "a" 'b' (\x y -> x)

a 

b makePair Pair a b“a” 

‘b’ 

“a” 

‘b’ 
“a” 

“a” 

“a” 

(\x y -> x)
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newtype and an access function 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
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newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

1) A type named Parser.

2) A term level constructor of Parser’s named Parser. 

The type of this (constructor) function is

Parser :: (String -> Maybe (a, String)) -> Parser a

You give it a function of the type

(String -> Maybe (a, String))

 and it wraps it inside a Parser

    

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype can have a named function (1)
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newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

3) A function named parse to remove the Parser wrapper and 

get your function back. The type of this function is:

parse :: Parser a -> String -> Maybe (a, String)

A term level constructor named Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype can have a named function (2)
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Prelude> newtype 

Parser a = Parser { parse :: String -> Maybe (a,String) }

Prelude> :t Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

Prelude> :t parse

parse :: Parser a -> String -> Maybe (a, String)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – constructor and unwrap functions (1)
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newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

the term level constructor (Parser) 

the function to remove the wrapper (parse) 

Both can have arbitrary names 

No need to match the type name. 

It's common to write:

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – constructor and unwrap functions (2)
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newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

this name makes it clear unParser removes 

the wrapper around the parsing function. 

unParser :: Parser a -> String -> Maybe (a, String)

however, it is recommended that the type and constructor 

have the same name when using newtypes. 

(Parser, Parser)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – constructor and unwrap functions (3)
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newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

1) Parser is declared as a type with a type parameter a

2) can instantiate Parser by providing a parser function 

p = Parser  (\s -> Nothing)

3) a function name parser defined and 

    it is capable of running Parser’s.

unwrap the function

then apply the function

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – instantiation 
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newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

parser :: Parser a -> String -> Maybe (a, String)

parser (Parser  (\s -> Nothing)) "my input" 

(\s -> Nothing)) "my input" 

Nothing

You are unwrapping the function using parse and 

then calling the unwrapped function with "myInput".

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – unwrapping
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First, let’s have a look at a parser newtype without record syntax:

newtype Parser' a = Parser' (String -> Maybe (a,String))

it stores a function String -> Maybe (a,String). 

To run this parser, we will need to make an extra function:

runParser' :: Parser' a -> String -> Maybe (a,String)

runParser' (Parser' f) i = f i

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – without record syntax (1)
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runParser' :: Parser' a -> String -> Maybe (a,String)

runParser' (Parser' f) i = f i

runParser' (Parser' $ \s -> Nothing) "my input".

But now note that, since Haskell functions are curried, 

we can simply remove the reference to the input i to get:

runParser'' :: Parser' -> (String -> Maybe (a,String))

runParser'' (Parser' f’) = f’

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – without record syntax (2)
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runParser'' :: Parser' -> (String -> Maybe (a,String))

runParser'' (Parser' f’) = f’

This function is exactly equivalent to runParser', 

but you could think about it differently: 

instead of applying the parser function to the value explicitly, 

it simply takes a parser and extracts the parser function from it; 

(Parser' f’) -> f’

however, thanks to currying, runParser'' 

can still be used with two arguments.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – without record syntax (3)
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newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

newtype Parser' a = Parser' (String -> Maybe (a,String))

difference : record syntax with only one field

this record syntax automatically defines a function 

parse :: Parser a  -> (String -> Maybe (a,String)), 

which extracts the String -> Maybe (a,String) function 

from the Parser a. 

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – with record syntax (1)



Existential Types (1D) 137 Young Won Lim
9/5/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

parse can be used with two arguments thanks to currying, 

and this simply has the effect of running the function stored 

within the Parser a. 

equivalent definition to the following code:

newtype Parser a = Parser (String -> Maybe (a,String))

parse :: Parser a -> (String -> Maybe (a,String))

parse (Parser p) = p

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – with record syntax (2)
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    data Person = Person { firstName :: String  ,

                         lastName :: String  ,

                         age ::  Int  ,

                         height :: Float  ,

                         phoneNo :: String  ,

                         flavor :: String  

                         } deriving (Show)   

    ghci> :t flavor  

    flavor :: Person -> String  

    ghci> :t firstName  

    firstName :: Person -> String  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Access functions in a record type (1)

return types of 
access functions

Person :: 
the input type of 
access functions
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    data Car = Car String String Int deriving (Show)  

    ghci> Car "Ford" "Mustang" 1967  

    Car "Ford" "Mustang" 1967  

    data Car = Car {company :: String, 

    model :: String, 

    year :: Int} deriving (Show)  

    ghci> Car {company="Ford", model="Mustang", year=1967}  

    Car {company = "Ford", model = "Mustang", year = 1967}  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Access functions in a record type (2)
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