
1 Young Won Lim
9/5/21

Monad P3 : Existential Types (1D)

2 Young Won Lim
9/5/21

 Copyright (c) 2021 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Existential Types (1D) 3 Young Won Lim
9/5/21

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Existential Types (1D) 4 Young Won Lim
9/5/21

● the things being quantified over are types

(ignoring certain language extensions, at least),

● logical statements are also types

● a "true" logical statement as "can be implemented".

● technically "false" should correspond to

an uninhabited data type (often called Void)

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Haskell quantification

Existential Types (1D) 5 Young Won Lim
9/5/21

technically "false" should correspond to

an uninhabited data type (often called Void)

so "not (not A)" would be

(A -> Void) -> Void -- useless

Assume forall r. r stands for "false"

forall r. (A -> r) -> r -- can extract the A value, i.e.

-- double-negation elimination.

using r instead of Void lets us get values back out.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical negation and forall

A Void

Void

VoidA

Existential Types (1D) 6 Young Won Lim
9/5/21

De Morgan's laws as applied to quantifiers;

function inputs are negated, logically speaking.

There's a similar equivalence between

Either a b … implicit universal quantification

forall r. (a -> r, b -> r) -> r

which corresponds to "A or B"

being the same as "not (not A) and (not B)".

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

De Morgan’s law and forall

(a -> r , b -> r)

(Not a) and (Not b)

((a -> r , b -> r)) -> r

Not ((Not a) and (Not b))

any
type a

specific
type r

Existential Types (1D) 7 Young Won Lim
9/5/21

Look up the connection between logical double-negation

and continuation-passing style if you want to know more

Due to duality, exists a. a can be expressed as

forall r. (forall a. a -> r) -> r

Due to duality, forall a. a can be expressed as

exists r. (exists a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical double negation and continuation passing style

Existential Types (1D) 8 Young Won Lim
9/5/21

map ($ 2) [(2*), (4*), (8*)]

[(2*) $ 2, (4*) $ 2, (8*) $ 2]

[4,8,16]

map (*2) [2, 4, 8]

[(*2) 2, (*2) 4, (*2) 8]

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 9 Young Won Lim
9/5/21

map ($ 2) [(2*), (4*), (8*)]

[4,8,16]

map (*2) [2, 4, 8]

The ($) section makes the code appear backwards,

as if we are applying a value to the functions

rather than the other way around.

such an reversal is at heart of

continuation passing style!

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 10 Young Won Lim
9/5/21

From a CPS perspective, ($ 2) is a suspended computation:

a function with general type

(a -> r) -> r

given another function as argument,

produces a final result.

the a -> r argument is the continuation;

it specifies how the computation will be brought to a conclusion.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 11 Young Won Lim
9/5/21

map ($ 2) [(2*), (4*), (8*)]

the functions in the list are supplied

as continuations via map, producing three distinct results.

note that suspended computations are largely

interchangeable with plain values:

flip ($) converts any value

into a suspended computation,

and passing id as its continuation

gives back the original value.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 12 Young Won Lim
9/5/21

They make it possible

to explicitly manipulate,

and dramatically alter,

the control flow of a program.

For instance, returning early from a procedure

can be implemented with continuations.

Exceptions and failure can also

be handled with continuations

- pass in a continuation for success,

- another continuation for fail,

- and invoke the appropriate continuation.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 13 Young Won Lim
9/5/21

Other possibilities include suspending a computation

and returning to it at another time,

and implementing simple forms of concurrency

(notably, one Haskell implementation, Hugs,

uses continuations to implement cooperative concurrency).

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 14 Young Won Lim
9/5/21

In Haskell, continuations can be used in a similar fashion,

for implementing interesting control flow in monads.

Note that there usually are alternative techniques for such use cases,

especially in tandem with laziness.

In some circumstances, CPS can be used to improve performance

by eliminating certain construction-pattern matching sequences

(i.e. a function returns a complex structure which the caller will

at some point deconstruct),

though a sufficiently smart compiler should be able to do the elimination

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 15 Young Won Lim
9/5/21

An elementary way to take advantage of continuations

is to modify our functions

so that they return suspended computations

rather than ordinary values.

We will illustrate how that is done with two simple examples

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 16 Young Won Lim
9/5/21

Example: A simple module, no continuations

-- We assume some primitives add and square for the example:

add :: Int -> Int -> Int

add x y = x + y

square :: Int -> Int

square x = x * x

pythagoras :: Int -> Int -> Int

pythagoras x y = add (square x) (square y)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 17 Young Won Lim
9/5/21

Example: A simple module, using continuations

-- We assume CPS versions of the add and square primitives,

-- (note: the actual definitions of add_cps and square_cps are not

-- in CPS form, they just have the correct type)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 18 Young Won Lim
9/5/21

add_cps :: Int -> Int -> ((Int -> r) -> r)

add_cps x y = \k -> k (add x y)

square_cps :: Int -> ((Int -> r) -> r)

square_cps x = \k -> k (square x)

pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)

pythagoras_cps x y = \k ->

 square_cps x $ \x_squared ->

 square_cps y $ \y_squared ->

 add_cps x_squared y_squared $ k

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Existential Types (1D) 19 Young Won Lim
9/5/21

fact x =

 if x <= 1 then 1 else x * fact (x - 1)

 fact 4

 4 * fact 3

 4 * (3 * fact 2)

 4 * (3 * (2 * fact 1))

 4 * (3 * (2 * 1))

 4 * (3 * 2)

 4 * 6

 24

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style)

Each call of fact is made with the promise

that the value returned will be multiplied

by the value of the parameter

at the time of the call.

Thus fact is invoked with larger and larger

control contexts as the calculation

proceeds.

Existential Types (1D) 20 Young Won Lim
9/5/21

fact_cps x k =

 if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

 fact_cps 4 id

 fact_cps 3 (\v -> id (4 * v))

 fact_cps 2 (\v' -> (\v -> id (4 * v)) (3 * v'))

 fact_cps 1 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v''))

 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v'')) 1

 (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * 1)

 (\v -> id (4 * v)) (3 * (2 * 1))

 id (4 * (3 * (2 * 1)))

 (4 * (3 * (2 * 1)))

 24

using 'id' as the first continuation.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style)

the control context is made explicit

in the continuation argument to fact_cps.

we never have a call to fact_cps

that is the argument

to some other computation.

Instead, each step remembers

what to do with the result

as a first-class function.

At the bottom of the recursion,

these continuations are evaluated.

Existential Types (1D) 21 Young Won Lim
9/5/21

When is a function written in continuation passing style?

 No function call is allowed to return to its caller, ever.

Instead, it must always pass its result directly

to an explicit continuation.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style)

Existential Types (1D) 22 Young Won Lim
9/5/21

 Every function takes an extra argument (a callback)

and passes its return value this callback.

 When a function is ready to "return",

it invokes the "current continuation" callback

(provided by its caller) on the return value.

 When calling functions written in CPS-style,

callers must also provide the "continuation", i.e.

a function that says what to do

with the result of the function call.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS (Continuation Passing Style)

Existential Types (1D) 23 Young Won Lim
9/5/21

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

forall r. (a -> r) -> r

forall r. (forall a. a -> r) -> r

exists a. a

think a callback function forall a. a -> r

forall a. a -> Int

forall a. a -> String a caller chooses type r

forall a. a -> Double

The caller of the overall function

(a -> r) -> r

chooses any type r

The body of the overall function

(a -> r) -> r

chooses any type a

the body of the callback function

must handle for all type a

Existential Types (1D) 24 Young Won Lim
9/5/21

id :: forall a. a -> a

id x = x

for any possible type a, quantified over types

a function whose type is a -> a

can be implemented a true logical statement

id works for all a.

a will unify with (or will be fixed to) any type

that caller of id may choose.

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

id function example

universally quantified type variables

in a type signature are

existentially quantified

in a function body

Existential Types (1D) 25 Young Won Lim
9/5/21

universally quantified type variables in a type signature

will be fixed when the corresponding function

is used (called)

in a type signature, a is universally quantified

but in the body of the function

we know nothing about the argument a,

we cannot inspect the argument a

(a is fixed when the function is used)

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

A type signature and a function body

id :: forall a. a -> a

id x = x

universally quantified type variables

existentially quantified in a function body

Existential Types (1D) 26 Young Won Lim
9/5/21

universally quantified type variables in a type signature

callers can pass (choose) anything to id

but due to the lack of information

about the argument in the body of id

a caller can only pass a value to id

without doing anything meaningful

So, id x = x is the only possible function of the type a -> a

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Lack of information in a function body

id :: forall a. a -> a

id x = x

a caller chooses values for

universally quantified variables

in the body of a such function,

must handle any type values

which is given by a caller :

existentially quantified variable

Existential Types (1D) 27 Young Won Lim
9/5/21

An existentially quantified type could be better explained

using the fictitious exists a. syntax

exists a. a -> a

for a certain type a,

we can implement a function whose type is a -> a.

any function will do,

then the “not” function on Bool satisfies the type a -> a

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Fictitious syntax exists a.

func :: exists a. a -> a

func True = False

func False = True

Existential Types (1D) 28 Young Won Lim
9/5/21

the function implementation on booleans

func :: exists a. a -> a

func True = False

func False = True

but we cannot use (apply) it as the “not“ function

because all we know about the type a is

that it exists.

Any information about which type it might be

has been discarded (i.e, is not used),

this means we can't apply func to any values

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Function implementations and applications

Existentials are always about

throwing type information away.

sometimes we want to work with types

that we don’t know at compile time.

Existential Types (1D) 29 Young Won Lim
9/5/21

in pseudo-Haskell:

 (exists x. p x x) -> c ≅ forall x. p x x -> c

a function p that takes an existential type x

is equivalent to a polymorphic function

using a universal quantifier forall x

because the function p must be prepared

to handle any one of the types x

that may be encoded in the existential type. exists x.

Haskell does not need an existential quantifier

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

Existential Types (1D) 30 Young Won Lim
9/5/21

a function that accepts a sum type must be implemented as

a case statement, with a tuple of handlers,

one for every type present in the sum.

Here, the sum type is replaced by a coend,

and a family of handlers becomes an end,

or a polymorphic function.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

Existential Types (1D) 31 Young Won Lim
9/5/21

This fact brings us back to universal quantifiers,

and the reason why Haskell doesn't have existential types directly

(exists a. above is entirely fictitious)

since things with existentially quantified types

can only be used with operations

that have universally quantified types,

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

No direct existential types

● for the callers of myPrettyPrinter

b is existentially quantified

● in the body of myPrettyPrinter

b is universally quantified

Existential Types (1D) 32 Young Won Lim
9/5/21

universal quantification is the default

any type variables in a type signature are

implicitly universally quantified,

id :: a -> a

id :: forall a. a -> a

also known as parametric polymorphism

in some other languages (e.g., C#) known as generics.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Parametric polymorphism (1)

Existential Types (1D) 33 Young Won Lim
9/5/21

Parametric polymorphism refers to

when the type of a value contains

one or more (unconstrained) type variables,

beginning with a lowercase letter

without constraints (nothing to the left of a =>)

so that the value may adopt any type

that results from substituting those type variables

with concrete types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (2)

data Maybe a = Just a | Nothing

Just 2.0 :: Maybe Double

Just 'a' :: Maybe Char

Just True :: Maybe Boolean

Existential Types (1D) 34 Young Won Lim
9/5/21

Polymorphic datatypes

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Either a b = Left a Right b

Polymorphic functions

reverse :: [a] -> [a]

fst :: (a, b) -> a

id :: a -> a

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Parametric polymorphism (3)

Just 2.0 :: Maybe Double

Just 'a' :: Maybe Char

Just True :: Maybe Boolean

Existential Types (1D) 35 Young Won Lim
9/5/21

Since a parametrically polymorphic value does not know

anything about the unconstrained type variables,

it must behave identically for all type (regardless of its type)

(related to universally quantification)

This is a somewhat limiting but extremely useful property

known as parametricity.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (4)

data Maybe a = Nothing | Just a

reverse :: [a] -> [a]

Existential Types (1D) 36 Young Won Lim
9/5/21

the function id :: a -> a contains

an unconstrained type variable a in its type,

and so can be used in a context requiring

Char -> Char or

Integer -> Integer or

(Bool -> Maybe Bool) -> (Bool -> Maybe Bool) or

any of a literally infinite list of other possibilities.

if a single type variable appears multiple times,

it must take the same type everywhere it appears

→ the result type of id must be the same as the argument type

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (5)

Existential Types (1D) 37 Young Won Lim
9/5/21

A variable is universally quantified

when the consumer of the variable’s expression

can choose what it will be.

A variable is existentially quantified

when the consumer of the variable’s expression

has to deal with the fact that the choice was made for him.

https://markkarpov.com/post/existential-quantification.html

Quantified variable choice

Universally quantified variable:

the consumer chooses a value

Existentially quantified variable:

the choice is made for the consumer

callers of a
function

the body of
such a function

consumers of a function

Existential Types (1D) 38 Young Won Lim
9/5/21

Both universally and existentially quantified variables

are introduced with forall.

There is no exists in Haskell.

In fact, it’s not necessary.

https://markkarpov.com/post/existential-quantification.html

Quantified variables with forall

Existential Types (1D) 39 Young Won Lim
9/5/21

data Something where

 Something :: forall a. a -> Something

one way to have existentials –

by putting values in wrappers

that “hide” type variables from signatures.

 Something a :: Something

 the type variable a is hidden in the type Something

https://markkarpov.com/post/existential-quantification.html

Making existentials – hiding type variables

Existential Types (1D) 40 Young Won Lim
9/5/21

data Something where

 Something :: forall a. a -> Something

 Something a :: Something

 Something 2.0 :: Something

 Something 'a' :: Something

 Something True :: Something

the constructor function Something return

data value of type Something

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – data and type constructors

data Point a = Pt a a

Pt 2.0 3.0 :: Point Float

Pt 'a' 'b' :: Point Char

Pt True False :: Point Bool

data constructor

type constructor +
bounded type parameter
: a concrete type

polymorphic type

type constructor

Existential Types (1D) 41 Young Won Lim
9/5/21

data Something where

 Something :: forall a. a -> Something

 findx :: Something -> Float

 findx (Something x) -> x

The constructor accepts any a we like,

but after construction we

lose the type information

and pattern matching afterwards only reveals

that there is some a,

but nothing regarding what it is.

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – pattern matching

data Point a = Pt a a

pointx :: Point Float -> Float

pointx (Pt x _) = x

pointy :: Point Float -> Float

pointy (Pt _ y) = y

Existential Types (1D) 42 Young Won Lim
9/5/21

data Something where

 Something :: forall a. a -> Something

the constructor function Something return

existentially quantified data of type Something

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – constructing and using a value

Something a :: Something

a data value is
constructed

a data value is
used

universally
quantified

existentially
quantified aa

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

a function parameter,
pattern matching

Existential Types (1D) 43 Young Won Lim
9/5/21

● passing a value to id: (universally quantified)

we can pass anything to id but we lack any information

about the argument in the body of id.

● passing a value to Something (existentially quantified)

existential wrappers

➔ return existentially quantified data from a function.

➔ avoid unification of existentials with outer context

➔ avoid escaping of type variables.

https://markkarpov.com/post/existential-quantification.html

Returning existentially quantified data

id 1 :: Int

id ‘a’ :: Char

Id 2.0 :: Double

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

findx (Something x) -> x

not possible !!!

cannot extract type variable a

Existential Types (1D) 44 Young Won Lim
9/5/21

● passing a value to id: (universally quantified)

universally quantified variable

the consumer chooses

id :: forall a. a -> a

● passing a value to Something (existentially quantified)

existentially quantified variable

the choice is made for the consumer

data Something where

Something :: forall a. a -> Something

https://markkarpov.com/post/existential-quantification.html

Returning existentially quantified data

id Int :: Int

id Char :: Char

id Double :: Double

example consumer function

foo :: Something -> Int

foo x = …

 x :: Something

type variable a is already chosen

could be one of these

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

Existential Types (1D) 45 Young Won Lim
9/5/21

data Something where

 Something :: forall a. a -> Something

data r where

 r :: forall a. a -> r

forall r. (forall a. a -> r) -> r
 Assume the callback function name is r

the type variable a is hidden in the type r

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – similar forms

Something 1 :: Something
Something ’a’ :: Something
Something 2.0 :: Something

r 1 :: r
r ’a’ :: r
r 2.0 :: r

r 1 :: Int
r ’a’ :: Int
r 2.0 :: Int

r 1 :: Char
r ’a’ :: Char
r 2.0 :: Char

r 1 :: Double
r ’a’ :: Double
r 2.0 :: Double

Existential Types (1D) 46 Young Won Lim
9/5/21

data Something where

 Something :: forall a. a -> Something

data r where

 r :: forall a. a -> r

forall r. (forall a. a -> r) -> r
 Assume the callback function name is r

the type variable a is hidden in the type r

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – similar forms

 r a :: r

a data value is
constructed

a data value is
used

universally
quantified

existentially
quantified aa
the type variable a
is hidden in the type r

Existential Types (1D) 47 Young Won Lim
9/5/21

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – rank-2 type

Inner level Outer level

callback function
body

callback function
as an argument

universally
quantified

existentially
quantified aaexponentially

quantified a

universally
quantified a

argument callbackforall r. -> r

(forall a. a -> r)

forall r. (forall a. a -> r) -> r

Outer level

Inner level
the type variable a
is hidden in the type r

Existential Types (1D) 48 Young Won Lim
9/5/21

we can write the type

exists a. a

as

forall r. (forall a. a -> r) -> r

for all result types r,

given a function a -> r

that takes an argument of type a, for all types a

and returns a value of type r,

we can get a result of type r

a caller supplies the callback function of the type a -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

a r

A caller supplies the callback function
with the type a -> r

Existential Types (1D) 49 Young Won Lim
9/5/21

we can write the type

exists a. a

as

forall r. (forall a. a -> r) -> r

a caller supplies the callback function of the type a -> r

for a given type r

 forall a. a -> Int

 forall a. a -> String a caller chooses type r

 forall a. a -> Double

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

a String

any
type a

specific
type r

a caller of the overall type
determines the specific type r

Int

Double

Existential Types (1D) 50 Young Won Lim
9/5/21

 forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

any
type a

specific
type r

a caller of the overall type function
chooses the specific type r

The body of the overall type function
must handle any type r

universally
quantified

existentially
quantified

r

r

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Existential Types (1D) 51 Young Won Lim
9/5/21

 forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

any
type a

specific
type r

a caller of the overall type function
must handle any type a

The body of the overall type function
chooses the specific type a

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

The body of the callback function
must also handle any type a

universally
quantified

existentially
quantified

a

a

Existential Types (1D) 52 Young Won Lim
9/5/21

Existential types and forall

forall r. (forall a. a -> r) -> r

specific
type a

the overall type can choose
whatever specific type r

existentially
quantified a

universally
quantified r

forall r. (forall a. a -> r) -> r

specific
type r

the callback function type can
choose whatever specific type a

existentially
quantified r

universally
quantified a

overall function type callback function type

the 1st argument of the overall type
is a callback function
its 1st argument a is selected somehow
in the body of the overall function

 Caller

 Body

For the caller of the function For the body of the function

the caller of the overall function
supplies a callback function for a
specific return type r

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Existential Types (1D) 53 Young Won Lim
9/5/21

we can write the type

exists a. a

as

forall r. (forall a. a -> r) -> r

the overall type is not universally quantified for a

only its argument (forall a. a -> r) is universally quantified for a

The overall type takes an argument … (forall a. a -> r)

that itself is universally quantified for a,

The overall type can then use

with whatever specific type r it chooses.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

The overall type can choose
whatever specific type r
Universally quantified

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Existential Types (1D) 54 Young Won Lim
9/5/21

data Foo = forall a. MkFoo a (a -> Bool) | Nil

the data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo

Nil :: Foo

Notice that the type variable a does not appear

in the type of MkFoo and

in the data type itself, Foo

Hidden

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (1)

MkFoo 3 even :: Foo

MkFoo 'c' isUpper :: Foo

even :: Integer -> Bool

isUpper :: Char -> Bool

Existential Types (1D) 55 Young Won Lim
9/5/21

MkFoo :: forall a. a -> (a -> Bool) -> Foo

a valid expression example

 [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

(MkFoo 3 even) packages an integer with a function

(MkFoo 'c' isUpper) packages a character with a function

Each of these are of type Foo and can be put in a list.

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (2)

even :: Integer -> Bool

isUpper :: Char -> Bool

Existential Types (1D) 56 Young Won Lim
9/5/21

What can we do with a value of type Foo?.

In particular, what happens when we pattern-match on MkFoo?

 f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible,

the only (useful) thing we can do with them is

to apply fn to val to get a boolean.

cannot extract val and fn

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (3)

f :: Foo -> Bool

fn :: a -> Bool

f (MkFoo val fn) = fn val

Existential Types (1D) 57 Young Won Lim
9/5/21

data Foo = forall a. MkFoo a (a -> Bool) | Nil

MkFoo :: forall a. a -> (a -> Bool) -> Foo

 [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

What this allows us to do is

to package heterogenous values together

with a bunch of functions that manipulate them,

and then treat that collection of packages in a uniform manner.

In this way, you can express object-oriented-like programming

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (4)

fn :: a -> Bool

even :: Integer -> Bool

isUpper :: Char -> Bool

Existential Types (1D) 58 Young Won Lim
9/5/21

Existentials have always to do with

throwing type information away.

sometimes we want to work with types

that we don’t know at compile time.

the types typically depend on the state of external world:

the types could depend on user’s input,

on contents of a file to be parsed, etc.

Haskell’s type system is powerful enough in these cases

https://markkarpov.com/post/existential-quantification.html

Unknown types at compile time

Existential Types (1D) 59 Young Won Lim
9/5/21

We want to work with values of types

that we don’t know at compile time,

but at run time there are no types at all:

they have been erased!

then we have to preserve some information

about existentially quantified type to make use of it,

otherwise we’ll be in the same position as implementers of id

having a value and only being able to pass it around

never doing anything meaningful with it.

There are various degrees of how much we might want to preserve:

https://markkarpov.com/post/existential-quantification.html

Preserving information about existentials

Existential Types (1D) 60 Young Won Lim
9/5/21

We could have a in the type [a] existentially quantified.

There are still some things we could do with a value of this type.

we could compute length of the list.

So knowing nothing about a type is also an option sometimes

when it parameterizes another type and

we have parametrically-polymorphic functions

that work on that type.

In this case the set of possible types for a is open i.e. it can grow.

https://markkarpov.com/post/existential-quantification.html

Parameterizing another type

Existential Types (1D) 61 Young Won Lim
9/5/21

data Showable where

 Showable :: forall a. Show a => a -> Showable

We could assume that the existentially quantified type

has certain properties (instances):

● pattern-matching on Showable will give us

the corresponding dictionary back.

● can do as much as the knowledge about the attached constraint

● the set of possible types for a is open

(additional new instances of Show can be defined).

https://markkarpov.com/post/existential-quantification.html

Existentially quantified type with constraints

data Something where

 Something :: forall a. a -> Something

simple existentially quantified type variable

Existential Types (1D) 62 Young Won Lim
9/5/21

myPrettyPrinter

 :: forall a. Show a =>

(forall b. Show b => b -> String)

 -> Int

 -> Bool

 -> a

 -> String

Only variables with foralls at the beginning of type signature

will be fixed when the corresponding function is used

Other foralls deal with independent type variables:

https://markkarpov.com/post/existential-quantification.html

The first forall at the type signature

forall a. *** (forall b. ***)

when myPrettyPrinter is used

a will be fixed

but not b

the 1st argument is

a call back function

b -> String

Existential Types (1D) 63 Young Won Lim
9/5/21

myPrettyPrinter

 :: forall a. Show a =>

(forall b. Show b => b -> String) -- call back function

 -> Int

 -> Bool

 -> a

 -> String

https://markkarpov.com/post/existential-quantification.html

Two levels of foralls

two levels of foralls (rank-2 type)

 forall a. *** (forall b. ***)

in general such constructions

are called rank-N types.

Existential Types (1D) 64 Young Won Lim
9/5/21

Both universally and existentially quantified variables

are introduced with forall.

for callers of myPrettyPrinter

● a is universally quantified

we can choose what the type will be

● b is existentially quantified

the callback function has to prepare to deal with any b

that will be given to the callback b -> String

https://markkarpov.com/post/existential-quantification.html

For consumers of a function

myPrettyPrinter

 :: forall a. Show a =>

(forall b. Show b => b -> String)

 -> Int

 -> Bool

 -> a

 -> String

callers of myPrettyPrinter provide

the call back b -> String

which must handle any b

Existential Types (1D) 65 Young Won Lim
9/5/21

https://markkarpov.com/post/existential-quantification.html

For consumers of a function

myPrettyPrinter

 :: forall a. Show a =>

(forall b. Show b => b -> String)

 -> Int

 -> Bool

 -> a

 -> String

myPrettyPrinter fn i t x =

 ... fn 0.8 …

return str

print (myPrettyPrinter callback 123 True)

Consumers of the expression 1

Consumers of the expression 2

fn :: b -> String

i :: Int

t :: Bool

x :: a

str :: String

Existential Types (1D) 66 Young Won Lim
9/5/21

● for the callers of myPrettyPrinter, a is universally quantified

● in the body of myPrettyPrinter, a is existentially quantified

➔ the caller of myPrettyPrinter already has chosen the type

➔ A specific return type of the callback function b -> String

● for the callers of myPrettyPrinter, b is existentially quantified

● in the body of myPrettyPrinter, b is universally quantified

➔ b is the first argument of the call back function b -> String

➔ when the call back function is applied with b

the body of myPrettyPrinter can choose its concrete type

b -> String-> Int -> Bool-> a-> String

https://markkarpov.com/post/existential-quantification.html

In the body of a function

myPrettyPrinter

 :: forall a. Show a =>

(forall b. Show b => b -> String)

 -> Int

 -> Bool

 -> a

 -> String

Universally quantified variable

the consumer choose

Existentially quantified variable

the choice is made for the consumer

Existential Types (1D) 67 Young Won Lim
9/5/21

forall r.

 (forall a. a -> r)

 -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

myPrettyPrinter

 :: forall a. Show a =>

(forall b. Show b => b -> String)

 -> Int

 -> Bool

 -> a

 -> String

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

a
b

a
b

callers of myPrettyPrinter provide

the call back function b -> String

which must handle any b

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Existential Types (1D) 68 Young Won Lim
9/5/21

subtyping (also subtype polymorphism)

is a form of type polymorphism in which a subtype is a datatype

that is related to another datatype (the supertype)

by some notion of substitutability,

meaning that program elements,

typically subroutines or functions,

written to operate on elements of the supertype

can also operate on elements of the subtype.

https://en.wikipedia.org/wiki/Subtyping

Subtyping

Existential Types (1D) 69 Young Won Lim
9/5/21

Haskell doesn't have a notion of subtyping

Quantifiers can be considered as a tool for subtyping,

with a hierarchy going from universal to concrete to existential.

type forall a. a could be converted to any other type,

so it could be seen as a subtype of everything;

any type could be converted to the type exists a. a,

making that a supertype of everything.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

forall a. a

any type

exists a. a

universal

concrete

existential

Existential Types (1D) 70 Young Won Lim
9/5/21

forall a. a is impossible

there are no values of type forall a. a except errors

exists a. a is useless

you canot do anything with the type exists a. a

but the analogy works on paper at least.

So, the basic idea is roughly that

universally quantified types describe

things that work the same for any type,

existentially quantified types describe

things that work with a specific but unknown type.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

forall a. a

any type

exists a. a

subtype of
everything

supertype of
everything

impossible –
no such value

useless –
cannot do anything

Existential Types (1D) 71 Young Won Lim
9/5/21

data EType a where

 ETypeWord8 :: EType Word8

 ETypeInt :: EType Int

 ETypeFloat :: EType Float

 ETypeDouble :: EType Double

 ETypeString :: EType String

data Something where

 Something :: EType a -> a -> Something

 We could use GADTs to restore exact types of

existentially quantified variables later:

https://markkarpov.com/post/existential-quantification.html

Restoring exact types

Existential Types (1D) 72 Young Won Lim
9/5/21

Matching on one of the data constructors of EType

reveals a and after that we are free to do anything

with the value of corresponding type

because we know it.

With this approach the set of possible types for a

is limited and closed.

It can be expanded

by changing the definition of EType though.

https://markkarpov.com/post/existential-quantification.html

How to make use of existentials

data EType a where

 ETypeWord8 :: EType Word8

 ETypeInt :: EType Int

 ETypeFloat :: EType Float

 ETypeDouble :: EType Double

 ETypeString :: EType String

data Something where

 Something

:: EType a -> a -> Something

Existential Types (1D) 73 Young Won Lim
9/5/21

Generalised Algebraic Data Types

generalise ordinary algebraic data types

by allowing you to give the type signatures of constructors explicitly.

data Term a where

 Lit :: Int -> Term Int

 Succ :: Term Int -> Term Int

 IsZero :: Term Int -> Term Bool

 If :: Term Bool -> Term a -> Term a -> Term a

 Pair :: Term a -> Term b -> Term (a,b)

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/gadt.html

Generalized Algebraic Data Type (1)

Existential Types (1D) 74 Young Won Lim
9/5/21

Notice that the return type of the constructors is not always Term a,

as is the case with ordinary vanilla data types.

Now we can write a well-typed eval function for these Terms:

 eval :: Term a -> a

 eval (Lit i) = i

 eval (Succ t) = 1 + eval t

 eval (IsZero t) = eval t == 0

 eval (If b e1 e2) = if eval b then eval e1 else eval e2

 eval (Pair e1 e2) = (eval e1, eval e2)

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/gadt.html

Generalized Algebraic Data Type (2)

Existential Types (1D) 75 Young Won Lim
9/5/21

Existential Quantification

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 76 Young Won Lim
9/5/21

Existential types, or

Existentials for short,

provide a way of

squashing a group of types

into one, single type.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

Existential Types (1D) 77 Young Won Lim
9/5/21

Existentials are part of GHC's type system extensions.

But not part of Haskell98

have to either compile with a command-line parameter of

-XExistentialQuantification,

or put at the top of your sources that use existentials.

{-# LANGUAGE ExistentialQuantification #-}

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

Existential Types (1D) 78 Young Won Lim
9/5/21

The forall keyword is to explicitly bring fresh type variables into scope

type variables :

those variables that begin with a lowercase letter

the compiler allows any type to fill these variables

those variables that are universally quantified

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall and type variables

Existential Types (1D) 79 Young Won Lim
9/5/21

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

a lowercase type parameter

implicitly begins with a forall keyword,

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

two type declarations for map are equivalent

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type variables in a polymorphic function

Existential Types (1D) 80 Young Won Lim
9/5/21

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

instantiating the general type of map

to a more specific type

a = Int

b = String

(Int -> String) -> [Int] -> [String]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Instantiating type variables

Existential Types (1D) 81 Young Won Lim
9/5/21

Hiding a type variable

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 82 Young Won Lim
9/5/21

Normally when creating a new type

using type, newtype, data, etc.,

every type variable that appears on the right-hand side

must also appear on the left-hand side.

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping this rule

Existential types can be used for several different purposes.

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

A rule for creating a new type

Existential Types (1D) 83 Young Won Lim
9/5/21

Normally, any type variable appearing on the right

must also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type b of the buffer

is not specified on the right

(b is a type variable rather than a type)

but also is not specified on the left

(there's no b in the left part).

In Haskell98, you would have to write

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Not specifying a type variable

Record Access Functions
buffer :: Worker x y -> b
input :: Worker x y -> x
output :: Worker x y -> y

Existential Types (1D) 84 Young Won Lim
9/5/21

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

However, suppose that a Worker can use any type b

so long as it belongs to some particular class.

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

https://wiki.haskell.org/Existential_type

A type variable and a class

Existential Types (1D) 85 Young Won Lim
9/5/21

Explicit type signature :

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

foo :: (Buffer b) => Worker b Int Int

Existential type :

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear

in the Worker type at all. Worker x y

https://wiki.haskell.org/Existential_type

Explicit types and Existential types

Existential Types (1D) 86 Young Won Lim
9/5/21

The monomorphism restriction is a counter-intuitive rule

in Haskell type inference.

If you forget to provide a type signature,

sometimes this rule will fill the free type variables

with specific types using type defaulting rules.

always less polymorphic than you'd expect,

so often this results in type errors

when you expected it to infer a perfectly sane type

for a polymorphic expression.

https://wiki.haskell.org/Existential_type

Monomorphism restriction

Existential Types (1D) 87 Young Won Lim
9/5/21

A simple example is plus = (+).

Without an explicit signature for plus,

the compiler will not infer the type for plus

(+) :: (Num a) => a -> a -> a

but will apply defaulting rules to specify

plus :: Integer -> Integer -> Integer

When applied to plus 3.5 2.7, GHCi will then produce

the somewhat-misleading-looking error,

No instance for (Fractional Integer) arising from the literal ‘3.5’.

https://wiki.haskell.org/Existential_type

Monomorphism restriction example

Existential Types (1D) 88 Young Won Lim
9/5/21

func is a function with the same type for its input and output

so we could compose it with itself, for example.

the only things you can do with something

that has an existential type are

the things you can do based on the non-existential parts of the type.

Similarly, given something of type exists a. [a]

we can find its length, or concatenate it to itself,

or drop some elements, or anything else we can do to any list.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

func :: exists a. a -> a

func True = False

func False = True

Existential Types (1D) 89 Young Won Lim
9/5/21

an example of an existentially quantified type

data Sum = forall a. Constructor a

forall a. (Constructor_a:: a -> Sum) Constructor:: (exists a. a) -> Sum≅

data Sum = int | char | bool |

an example of a universally quantified type

data Product = Constructor (forall a. a)

data Product = int char bool

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

Existential Types (1D) 90 Young Won Lim
9/5/21

● it is now impossible for a function

to demand a Worker having a specific type of buffer.

● the type of foo can now be derived automatically

without needing an explicit type signature.

(No monomorphism restriction.)

● since code now has no idea

what type the buffer function returns,

you are more limited in what you can do to it.

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (5)

Existential Types (1D) 91 Young Won Lim
9/5/21

you will usually want a hidden type to belong to a specific class,

or you will want to pass some functions along

that can work on that type.

Otherwise you'll have some value belonging

to a random unknown type,

and you won't be able to do anything to it!

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (6)

Existential Types (1D) 92 Young Won Lim
9/5/21

This illustrates creating a heterogeneous list,

all of whose members implement Show

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'"

https://wiki.haskell.org/Existential_type

Hiding a type variable (7)

Existential Types (1D) 93 Young Won Lim
9/5/21

In Haskell, an existential data type is one

that is defined in terms not of a concrete type,

but in terms of a quantified type variable,

introduced on the right-hand side of the data declaration.

https://blog.sumtypeofway.com/posts/existential-haskell.html

Hiding a type variable (7)

Existential Types (1D) 94 Young Won Lim
9/5/21

an existential type provides

a well-typed "box" around an unspecified type.

The box does "hide" the type in a sense,

which allows you to make a heterogeneous list of such boxes,

ignoring the types they contain.

It turns out that an unconstrained existential pretty useless,

but a constrained type allows you to pattern match

to peek inside the "box" and make the type class facilities available:

https://blog.sumtypeofway.com/posts/existential-haskell.html

Hiding a type variable (7)

Existential Types (1D) 95 Young Won Lim
9/5/21

Note: You can use existential types

to convert a more specific type

into a less specific one.

constrained type variables

There is no way to perform the reverse conversion!

https://wiki.haskell.org/Existential_type

Less specific types

Existential Types (1D) 96 Young Won Lim
9/5/21

It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration)

forall r. (forall a. Show a => a -> r) -> r

(the leading forall r. is optional

unless the expression is part of another expression).

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (1)

Existential Types (1D) 97 Young Won Lim
9/5/21

The conversions are:

fromObj :: Obj -> forall r. (forall a. Show a => a -> r) -> r

fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Show a => a -> r) -> r) -> Obj

toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (2)

Existential Types (1D) 98 Young Won Lim
9/5/21

Heterogeneous Lists

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 99 Young Won Lim
9/5/21

Suppose we have a group of values.

they may not be all the same type,

but they are all members of some class

thus, they have a certain property

It might be useful to throw all these values into a list.

normally this is impossible because lists elements

must be of the same type

(homogeneous with respect to types).

existential types allow us to loosen this requirement

by defining a type hider or type box:

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type hider

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

Existential Types (1D) 100 Young Won Lim
9/5/21

data ShowBox = forall s. Show s => SB s -- type hider

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

[SB (), SB 5, SB True] calls the constructor

on three values of different types,

to place them all into a single list

virtually the same type for each one.

Use the forall in the constructor

SB :: forall s. Show s => s -> ShowBox.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (1)

Existential Types (1D) 101 Young Won Lim
9/5/21

data ShowBox = forall s. Show s => SB s -- type hider

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

When passing heteroList type parameters to a function

we cannot take out the values inside the SB

because their type might Bool. Int, Char, …

But each of the elements can be

converted to a string via show.

In fact, that's the only thing we know about them.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (2)

Existential Types (1D) 102 Young Won Lim
9/5/21

 instance Show ShowBox where

 show (SB s) = show s

In the definition of show for ShowBox

we don't know the type of s.

But we do know that the type is an instance of Show

due to the constraint on the SB constructor.

Therefore, it's legal to use the function show on s,

as seen in the right-hand side of the function definition.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (3)

ShowBox data type made into

an instance of the Show class

by this instance declaration:

Existential Types (1D) 103 Young Won Lim
9/5/21

instance Show ShowBox where

 show (SB s) = show s

 f :: [ShowBox] -> IO ()

 f xs = mapM_ print xs

main = f heteroList

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (4)

Existential Types (1D) 104 Young Won Lim
9/5/21

Example: Using our heterogeneous list

instance Show ShowBox where

 show (SB s) = show s

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (5)

Existential Types (1D) 105 Young Won Lim
9/5/21

mapM maps an "action" (ie function of type a -> m b)

over a list [a] and gives you all the results as m [b]

mapM_ does the same thing,

but never collects the results, returning a m ().

If you care about the results

of your a -> m b function, use mapM.

If you only care about the effect,

but not the resulting value,

 use mapM_, because it can be more efficient

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (1)

Existential Types (1D) 106 Young Won Lim
9/5/21

Always use mapM_ with functions of the type a -> m (),

like print or putStrLn.

these functions return () to signify that only the effect matters.

If you used mapM, you'd get a list of () (ie [(), (), ()]),

which would be completely useless

but waste some memory.

If you use mapM_, you would just get a (),

but it would still print everything.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (2)

Existential Types (1D) 107 Young Won Lim
9/5/21

Normal map is something different:

it takes a normal function (a -> b)

instead of one using a monad (a -> m b).

This means that it cannot have any sort of effect

besides returning the changed list.

You would use it if you want to transform a list

using a normal function.

map_ doesn't exist because, since you don't have any effects,

you always care about the results of using map.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (3)

Existential Types (1D) 108 Young Won Lim
9/5/21

Quantified types

as products and sums

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 109 Young Won Lim
9/5/21

A universally quantified type may be interpreted

as an infinite product of types.

a polymorphic function can be understood

as a product, or a tuple, of individual functions,

one per every possible type a.

To construct a value of such type, we have

to provide all the components of the tuple at once.

-- one formula generating an infinity of functions

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 110 Young Won Lim
9/5/21

Example: Identity function

 id :: forall a. a -> a

 id a = a

a polymorphic function can be understood

as a product, or a tuple, of individual functions,

one per every possible type a.

Int -> Int,

Double -> Double,

Char -> Char,

[Char] -> [Char],

…

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 111 Young Won Lim
9/5/21

To construct a value of such type, we have

to provide all the components of the tuple at once.

in case of numeric types, one numeric constant

may be used to initialize many types at once.

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0

x may be conceptualized as a tuple consisting

of an Int value, a Double value, etc.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 112 Young Won Lim
9/5/21

Similarly, an existentially quantified type may be interpreted

as an infinite sum.

Example: Existential type

 data ShowBox = forall s. Show s => SB s -- type hider

may be conceptualized as a sum:

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 113 Young Won Lim
9/5/21

Example: Existential type

 data ShowBox = forall s. Show s => SB s -- type hider

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

to construct a value of this type,

we only have to pick one of the constructors

(SBUnit, SBInt, SBBool, SBIntList ...)

A polymorphic constructor SB

combines all those constructors into one.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Existential Types (1D) 114 Young Won Lim
9/5/21

Quantification as a primitive

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 115 Young Won Lim
9/5/21

Existential quantification is useful

for defining data types that aren't already defined.

Suppose there was no such thing as pairs built into haskell.

Existential quantification could be used to define them.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (1)

Existential Types (1D) 116 Young Won Lim
9/5/21

{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

Defining a data type c that is not already defined

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (2)

Pair $ \f -> f a b :: Pair a b

f :: a -> b -> c

f a b :: c

f is not yet defined

c can be any type (forall c)

Existential Types (1D) 117 Young Won Lim
9/5/21

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

every type variable that appears on the right-hand side

must also appear on the left-hand side.

Existential type hides a type variable c on the right-hand side.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (3)

Existential Types (1D) 118 Young Won Lim
9/5/21

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (4)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

a

b makePair Pair a b

P
a

ir

Existential Types (1D) 119 Young Won Lim
9/5/21

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

using a record type with a single field

newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

runPair is an access function

takes an input of the type Pair a b

returns an output of the type forall c. (a -> b -> c) -> c

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (5)

Existential Types (1D) 120 Young Won Lim
9/5/21

In GHCI

λ> :set -XExistentialQuantification

λ> :set -XrankNTypes

λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

λ> makePair a b = Pair $ \f -> f a b

λ> pair = makePair "a" 'b'

λ> :t pair

 pair :: Pair [Char] Char

λ> runPair pair (\x y -> x) -- unwrap (a -> b -> c) -> c then apply

 "a"

λ> runPair pair (\x y -> y) -- unwrap (a -> b -> c) -> c then apply

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (6)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b'

Pair $ \f -> f "a" 'b' :: Pair a b

a

b makePair Pair a b

P
a

ir

“a”

‘b’

f “a” ‘b’
“a”

‘b’

Existential Types (1D) 121 Young Won Lim
9/5/21

λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

λ> makePair a b = Pair $ \f -> f a b

λ> pair = makePair "a" 'b'

Pair $ \f -> f "a" 'b'

\f : function itself f :: a -> b -> c

f "a" 'b' : the result of applying the function

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (7)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b'

Pair $ \f -> f "a" 'b' :: Pair a b

a

b makePair Pair a b

P
a

ir

“a”

‘b’

f “a” ‘b’
“a”

‘b’

Existential Types (1D) 122 Young Won Lim
9/5/21

newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

runPair :: Pair a b -> forall c. (a -> b -> c) -> c

makePair a b = Pair $ \f -> f a b

runPair makePair a b = \f -> f a b -- unwrapping

makePair "a" 'b' = Pair $ \f -> f "a" 'b'

runPair makePair "a" 'b' = \f -> f "a" 'b'

pair = makePair :: Pair [Char] Char

runPair pair (\x y -> x) = (\x y -> x) "a" 'b'

runPair pair (\x y -> y) = (\x y -> y) "a" 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (8)

f

a

b
c

f a b

Pair $ \f -> f a b :: Pair a b

makePair "a" 'b'

Pair $ \f -> f "a" 'b' :: Pair a b

a

b makePair Pair a b

P
a

ir

“a”

‘b’

f “a” ‘b’
“a”

‘b’

Existential Types (1D) 123 Young Won Lim
9/5/21

runPair pair (\x y -> x) = (\x y -> x) "a" 'b'

runPair pair (\x y -> y) = (\x y -> y) "a" 'b'

runPair makePair "a" 'b' (\x y -> x)

(\x y -> x) "a" 'b'

 "a"

runPair makePair "a" 'b' (\x y -> y)

(\x y -> y) "a" 'b'

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (9)

Existential Types (1D) 124 Young Won Lim
9/5/21

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (10)

f

a

b
c

c

Pair $ \f -> f a b :: Pair a b

pair (\x y -> y)

makePair "a" 'b' (\x y -> y)

a

b makePair Pair a b“a”

‘b’

“a”

‘b’
“a”

‘b’

“a”

(\x y -> y)

f

a

b
c

c

Pair $ \f -> f a b :: Pair a b

pair (\x y -> x)

makePair "a" 'b' (\x y -> x)

a

b makePair Pair a b“a”

‘b’

“a”

‘b’
“a”

“a”

“a”

(\x y -> x)

Existential Types (1D) 125 Young Won Lim
9/5/21

newtype and an access function

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 126 Young Won Lim
9/5/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

1) A type named Parser.

2) A term level constructor of Parser’s named Parser.

The type of this (constructor) function is

Parser :: (String -> Maybe (a, String)) -> Parser a

You give it a function of the type

(String -> Maybe (a, String))

 and it wraps it inside a Parser

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype can have a named function (1)

Existential Types (1D) 127 Young Won Lim
9/5/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

3) A function named parse to remove the Parser wrapper and

get your function back. The type of this function is:

parse :: Parser a -> String -> Maybe (a, String)

A term level constructor named Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype can have a named function (2)

Existential Types (1D) 128 Young Won Lim
9/5/21

Prelude> newtype

Parser a = Parser { parse :: String -> Maybe (a,String) }

Prelude> :t Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

Prelude> :t parse

parse :: Parser a -> String -> Maybe (a, String)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – constructor and unwrap functions (1)

Existential Types (1D) 129 Young Won Lim
9/5/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

the term level constructor (Parser)

the function to remove the wrapper (parse)

Both can have arbitrary names

No need to match the type name.

It's common to write:

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – constructor and unwrap functions (2)

Existential Types (1D) 130 Young Won Lim
9/5/21

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

this name makes it clear unParser removes

the wrapper around the parsing function.

unParser :: Parser a -> String -> Maybe (a, String)

however, it is recommended that the type and constructor

have the same name when using newtypes.

(Parser, Parser)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – constructor and unwrap functions (3)

Existential Types (1D) 131 Young Won Lim
9/5/21

newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

1) Parser is declared as a type with a type parameter a

2) can instantiate Parser by providing a parser function

p = Parser (\s -> Nothing)

3) a function name parser defined and

 it is capable of running Parser’s.

unwrap the function

then apply the function

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – instantiation

Existential Types (1D) 132 Young Won Lim
9/5/21

newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

parser :: Parser a -> String -> Maybe (a, String)

parser (Parser (\s -> Nothing)) "my input"

(\s -> Nothing)) "my input"

Nothing

You are unwrapping the function using parse and

then calling the unwrapped function with "myInput".

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – unwrapping

Existential Types (1D) 133 Young Won Lim
9/5/21

First, let’s have a look at a parser newtype without record syntax:

newtype Parser' a = Parser' (String -> Maybe (a,String))

it stores a function String -> Maybe (a,String).

To run this parser, we will need to make an extra function:

runParser' :: Parser' a -> String -> Maybe (a,String)

runParser' (Parser' f) i = f i

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – without record syntax (1)

Existential Types (1D) 134 Young Won Lim
9/5/21

runParser' :: Parser' a -> String -> Maybe (a,String)

runParser' (Parser' f) i = f i

runParser' (Parser' $ \s -> Nothing) "my input".

But now note that, since Haskell functions are curried,

we can simply remove the reference to the input i to get:

runParser'' :: Parser' -> (String -> Maybe (a,String))

runParser'' (Parser' f’) = f’

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – without record syntax (2)

Existential Types (1D) 135 Young Won Lim
9/5/21

runParser'' :: Parser' -> (String -> Maybe (a,String))

runParser'' (Parser' f’) = f’

This function is exactly equivalent to runParser',

but you could think about it differently:

instead of applying the parser function to the value explicitly,

it simply takes a parser and extracts the parser function from it;

(Parser' f’) -> f’

however, thanks to currying, runParser''

can still be used with two arguments.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – without record syntax (3)

Existential Types (1D) 136 Young Won Lim
9/5/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

newtype Parser' a = Parser' (String -> Maybe (a,String))

difference : record syntax with only one field

this record syntax automatically defines a function

parse :: Parser a -> (String -> Maybe (a,String)),

which extracts the String -> Maybe (a,String) function

from the Parser a.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – with record syntax (1)

Existential Types (1D) 137 Young Won Lim
9/5/21

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

parse can be used with two arguments thanks to currying,

and this simply has the effect of running the function stored

within the Parser a.

equivalent definition to the following code:

newtype Parser a = Parser (String -> Maybe (a,String))

parse :: Parser a -> (String -> Maybe (a,String))

parse (Parser p) = p

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

newtype – with record syntax (2)

Existential Types (1D) 138 Young Won Lim
9/5/21

 data Person = Person { firstName :: String ,

 lastName :: String ,

 age :: Int ,

 height :: Float ,

 phoneNo :: String ,

 flavor :: String

 } deriving (Show)

 ghci> :t flavor

 flavor :: Person -> String

 ghci> :t firstName

 firstName :: Person -> String

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Access functions in a record type (1)

return types of
access functions

Person ::
the input type of
access functions

Existential Types (1D) 139 Young Won Lim
9/5/21

 data Car = Car String String Int deriving (Show)

 ghci> Car "Ford" "Mustang" 1967

 Car "Ford" "Mustang" 1967

 data Car = Car {company :: String,

 model :: String,

 year :: Int} deriving (Show)

 ghci> Car {company="Ford", model="Mustang", year=1967}

 Car {company = "Ford", model = "Mustang", year = 1967}

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Access functions in a record type (2)

Existential Types (1D) 140 Young Won Lim
9/5/21

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140

