
Young Won Lim
3/25/16

Path Delay

Young Won Lim
3/25/16

 Copyright (c) 2011-2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Path Delay (4D) 3 Young Won Lim
3/25/16

Path Delay

Max-Path
Min-Path
Critical Path
Timing Check
False Path
Multi-Cycle Path

Path Delay (4D) 4 Young Won Lim
3/25/16

Max Path / Min Path

Max path

min path

Max delay

min delay

contamination delay

propagation delay

t c d

t p d

t c d

t p d

the output is
changing

≤ tdelay ≤t c d t p d

Max delaymin delay

Path Delay (4D) 5 Young Won Lim
3/25/16

Rise / Fall Times

Rise Time

Max delay

min delay

Fall Time

t pdf t pdr

v
in

v
out

v
in

v
out

t f

tr

βn

βp
> 1

Rn

R p

< 1

τn
τ p

=
RnCout

R pCout

=
Rn

R p

< 1

βn

βp
= 1.0

βn

βp
= 1.5

βn

β p
= 2.0

t f

t r

=
2.2 τn

2.2 τ p

t p d

Fall Time

Rise Time

t pd f

t pd r

Path Delay (4D) 6 Young Won Lim
3/25/16

PVT Variation

High temperature Max delay
min delayLow temperature

Process

Voltage

Temperature

Path Delay (4D) 7 Young Won Lim
3/25/16

FF Output Delay

contamination delay

propagation delay

t c cq

t pcq

t c cq

t pcq

≤ tdelay ≤t c cq t p cq

Max delaymin delay

flipflop clock-to-q

Path Delay (4D) 8 Young Won Lim
3/25/16

Path Delay

contamination delay

propagation delay

t c d

t p d

t c d

t p d

combinational logic delay

≤ tdelay ≤t c d t p d

Max delaymin delay

Path Delay (4D) 9 Young Won Lim
3/25/16

t c cq

t c d

Reg-to-Reg Delay (1)

t c cq

t pcq

t c d

t p d

≤ tFF ≤t c cq t p cq

Max delaymin delay

≤ tcomb ≤t c d t p d

Max delaymin delay

≤ tdelay ≤t c cq + t cd t p cq + t pd

Max delaymin delay

min delay

t pcq

t p d

Max delay

Path Delay (4D) 10 Young Won Lim
3/25/16

Reg-to-Reg Delay (2)

t c cq

t pcq

t c d

t p d

≤ tFF ≤t c cq t p cq

Max delaymin delay

≤ tcomb ≤t c d t p d

Max delaymin delay

≤ tdelay ≤t c cq + t cd t p cq + t pd

Max delaymin delay

Path Delay (4D) 11 Young Won Lim
3/25/16

Setup Time / Hold Time

t c cq t c d

t pcq t p d

t c cq+ t c d

t pcq t p d

Max delay

min delay

Max delay

min delay

Setup Time OK

Hold Time OK

Setup Time Violation

Hold Time Violation

Path Delay (4D) 12 Young Won Lim
3/25/16

Setup Time / Hold Time

t c cq+ t c d

t pcq t p d

Max delay

min delay

Setup Time Violation

Hold Time Violation

This part has
been stabilized

This is the intended
operation

Since the delay is too
small signal passes
through the 2nd FF

Path Delay (4D) 13 Young Won Lim
3/25/16

Adder Simulation Waveform

All gate delays are
assumed to be the same

Path Delay (4D) 14 Young Won Lim
3/25/16

Glitches

Path Delay (4D) 15 Young Won Lim
3/25/16

False Path

Path Delay (4D) 16 Young Won Lim
3/25/16

Multi-Cycle Path

Path Delay (4D) 17 Young Won Lim
3/25/16

Verilog Timing Model Examples

i0

i1

s

z
i0

i1

s
sb

a0

a1

z

0

1

Path Delay (4D) 18 Young Won Lim
3/25/16

Gate-level Modeling

i0

i1
s

sb

a0

a1

z

not U0 (sb, s);

and U1 (a0, i0, sb),

U2 (a1, i1, s);

or U3 (z, a0, a1);

U0

U1

U2

U3

wire sb;

wire a0;

wire a1;

wire z;

wireValues are
continuously driven
by an output of a
device

always active driving a 0, 1, x, z

Path Delay (4D) 19 Young Won Lim
3/25/16

Simulation with Delta Delays

i0

i1
s

s
b

a
0

a
1

z

assign sb = ~s;

assign a0 = i0 &
sb;

assign a1 = i1 & s;

assign z = a0 |
a1;

U
0

U
1

U
2

U
3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

whenever s changes
sb = ~s;

whenever i0 or sb change
a0 = i0 & sb;

whenever i1 or s change
a1 = i1 & s;

whenever a0 or a1 change
z = a0 | a1;

Dataflow Modeling Behavioral Modeling

Path Delay (4D) 20 Young Won Lim
3/25/16

When i0 changes

i0

i1
s

s
b

a
0

a
1

zU0

U1

U2

U3

a0 = i0 &
sb;

z = a0 |
a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

Path Delay (4D) 21 Young Won Lim
3/25/16

When s changes

i0

i1
s

s
b

a
0

a
1

zU0

U1

U2

U3

sb =
~s;

a0 = i0 &
sb;

a1 = i1 &
s;

z = a0 |
a1;

z = a0 |
a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

Path Delay (4D) 22 Young Won Lim
3/25/16

Behavioral Modeling – Sequential

responds to
any input
changes
at any time

clk

d

these input changes does
not affect its output

D Q

clk

d q

Only sensitive to a
subset of of their
inputs – sensitivity
list

the two inputs (clk, d)
q

always @(posedge
clk)
 q = d;

always @ (posedge
clk)

q =
d;

q =
d;

Path Delay (4D) 23 Young Won Lim
3/25/16

Parallel Processes

i0

i1
s

s
b

a
0

a
1

zU
0

U
1

U
2

U
3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

always @(posedge clk)
 q = d;

Five
Parallel
Processes

D Q

clk

q

Young Won Lim
3/25/16

References

[1] http://en.wikipedia.org/
[2] http://www.allaboutcircuits.com/
[3] W. Wolf, “Modern VLSI Design : Systems on Silicon
[4] N. Weste, D. Harris, “CMOS VLSI Design: A Circuits and Systems Perspective”
[5] J. P. Uyemura, “Introduction to VLSI Circuits and Systems”
[6] https://en.wikiversity.org/wiki/The_necessities_in_SOC_Design
[7] https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
[8] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
[9] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Architecture
[10] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Organization
[11] https://en.wikiversity.org/wiki/Verilog_programming_in_plain_view

http://en.wikipedia.org/
http://www.allaboutcircuits.com/
https://en.wikiversity.org/wiki/The_necessities_in_Computer_Organization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 21
	Slide 24

