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Path Delay

Max-Path
Min-Path
Critical Path
Timing Check 
False Path
Multi-Cycle Path
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Max Path / Min Path
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Rise / Fall Times

Rise Time

Max delay

min delay

Fall Time

t pdf t pdr

v
in

v
out

v
in

v
out

t f

tr

βn

βp
> 1

Rn

R p

< 1

τn
τ p

=
RnCout

R pCout

=
Rn

R p

< 1

βn

βp
= 1.0

βn

βp
= 1.5

βn

β p
= 2.0

t f

t r

=
2.2 τn

2.2 τ p

t p d

Fall Time

Rise Time

t pd f

t pd r



Path Delay (4D) 6 Young Won Lim
3/25/16

PVT Variation 

High temperature Max delay
min delayLow temperature

Process

Voltage
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FF Output Delay
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propagation delay
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Path Delay

contamination delay

propagation delay
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t c cq

t c d

Reg-to-Reg Delay (1)
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Reg-to-Reg Delay (2)
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Setup Time / Hold Time 
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Setup Time / Hold Time 

t c cq+ t c d

t pcq t p d

Max delay

min delay

Setup Time  Violation

Hold Time Violation

This part has 
been stabilized

This is the intended 
operation

Since the delay is too 
small signal passes 
through the 2nd  FF
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Adder Simulation Waveform

All gate delays are 
assumed to be the same
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Glitches
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False Path
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Multi-Cycle Path
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Verilog Timing Model Examples
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Gate-level Modeling

i0

i1
s

sb

a0

a1

z

not U0 (sb, s);

and U1 (a0, i0, sb),

U2 (a1, i1, s);

or U3 (z, a0, a1);

U0

U1

U2

U3

wire sb;

wire a0;

wire a1;

wire z;

wireValues are 
continuously driven 
by an output of a 
device

always active driving a 0, 1, x, z
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Simulation with Delta Delays 

i0

i1
s

s
b

a
0

a
1

z

assign sb = ~s;

assign a0 =  i0 & 
sb;

assign a1 =  i1 & s;

assign z   =  a0 | 
a1;

U
0

U
1

U
2

U
3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;

whenever s changes
sb = ~s;

whenever i0 or sb change
a0 =  i0 & sb;

whenever i1 or s change
a1 =  i1 & s;

whenever a0 or a1 change
z =  a0 | a1;

Dataflow Modeling Behavioral  Modeling
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When i0 changes

i0

i1
s

s
b

a
0

a
1

zU0

U1

U2

U3

a0 =  i0 & 
sb;

z =  a0 | 
a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;
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When s changes

i0

i1
s

s
b

a
0

a
1

zU0

U1

U2

U3

sb = 
~s;

a0 =  i0 & 
sb;

a1 =  i1 & 
s;

z =  a0 | 
a1;

z =  a0 | 
a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;
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Behavioral Modeling – Sequential 

responds to 
any input 
changes
at any time

clk

d

these input changes does 
not affect its output

D      Q 

clk

d q

Only sensitive to a 
subset of of their 
inputs – sensitivity 
list 

the two inputs (clk, d) 
q

always @(posedge 
clk)
  q = d;

always @ (posedge 
clk)

q = 
d;

q = 
d;
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Parallel Processes

i0

i1
s

s
b

a
0

a
1

zU
0

U
1

U
2

U
3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;

always @(posedge clk)
  q = d;

Five 
Parallel 
Processes

D      Q 

clk

q
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