
Young Won Lim
6/13/20

Monad P3 : Mutability and Strictness (1C)

Young Won Lim
6/13/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Mutability and
Strictness (1C)

3 Young Won Lim
6/13/20

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Mutability and
Strictness (1C)

4 Young Won Lim
6/13/20

Mutability

Mutability and
Strictness (1C)

5 Young Won Lim
6/13/20

1) When a library written in another language

 which assumes mutable state. is called in Haskell

 eg) event-callback GUI toolkits.

2) Using Haskell to implement a language

 that provides imperative-style mutable variables.

3) Implementing algorithms that inherently require

 destructive updates to variables.

4) Dealing with volumes of bulk data massive enough

 to justify squeezing every drop of computational power available

 to make the problem at hand feasible.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Mutability demanding cases

Mutability and
Strictness (1C)

6 Young Won Lim
6/13/20

external demands can impose mutability on the code

library written in non-functional language (1)

language with imperative style variable (2)

internal demands can impose mutability on the code

 algorithms may require mutability (3)

extreme computational demands (4)

these do not include all the cases

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

External and internal demands on mutability

Mutability and
Strictness (1C)

7 Young Won Lim
6/13/20

sorting a list does not require

mutability in any essential way,

a function that sorts a list and returns a new list,

should be functionally pure

even if the sorting algorithm uses

destructive updates

to swap the position of the elements.

In such case, the mutability is

just an implementation detail.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Sorting problem

Mutability and
Strictness (1C)

8 Young Won Lim
6/13/20

Keeping functional purity

even though the mutability is allowed

in an implementation detail.

The standard libraries provide ST monad

as a nifty tool for handling such situations

while maintaining pure functions

the ST monad in Control.Monad.ST

allows mutability

keeps functional purity

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Functional purity and mutability

Mutability and
Strictness (1C)

9 Young Won Lim
6/13/20

ST monad allows temporary and local mutable effects.

Because of the way that ST monad is implemented,

- none of the effects can be visible from outside of a function

- with the the same input, the function always has

 the same output. (purity)

https://www.snoyman.com/blog/2017/12/what-makes-haskell-unique

Temporary and local mutable effects

Mutability and
Strictness (1C)

10 Young Won Lim
6/13/20

Mutable data structures can be found in the libraries

mutable arrays (alongside with immutable arrays)

in the vector package or the array package

bundled with GHC

There are also mutable hash tables,

such as those from the hashtables package.

In all cases mentioned,

both ST and IO versions are provided.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Mutable Data Structure

Mutability and
Strictness (1C)

11 Young Won Lim
6/13/20

to sort more efficiently a vector,

allow mutable access

instead of using only pure operations.

Haskell has two approaches for mutable access

1) mutable data structures

2) mutable copy

https://www.snoyman.com/blog/2017/12/what-makes-haskell-unique

Mutability Haskell Approaches

Mutability and
Strictness (1C)

12 Young Won Lim
6/13/20

The first is the ability

to explicitly create mutable data structures,

and mutate them in place. (mutable arrays)

if you need the performance, it's available.

unlike mutable-by-default approaches,

you now know exactly

which pieces of data you need to handle with care

when coding to avoid tripping yourself up.

https://www.snoyman.com/blog/2017/12/what-makes-haskell-unique

Mutable data structure approach

Mutability and
Strictness (1C)

13 Young Won Lim
6/13/20

The other approach is

to create a mutable copy of the original data,

perform your mutable algorithm on it,

then freeze the new copy

into an immutable version.

While this approach requires

an extra memory buffer

an extra copy of the elements in the vector,

it avoids completely the worries of your data

being changed behind your back.

https://www.snoyman.com/blog/2017/12/what-makes-haskell-unique

Mutable copy approach

Mutability and
Strictness (1C)

14 Young Won Lim
6/13/20

sortMutable :: MutableVector a -> ST (MutableVector a)

sortMutable = ... -- normal sorting algorithm

sortImmutable :: Vector a -> Vector a

sortImmutable orig = runST $ do

 mutable <- newMutableVector (length orig)

 copyValues orig mutable

 sort mutable

 freeze mutable

https://www.snoyman.com/blog/2017/12/what-makes-haskell-unique

Mutable copy approach – sorting examples

Mutability and
Strictness (1C)

15 Young Won Lim
6/13/20

An immutable array cannot directly update it elements in-place

semantically simplicity of immutable array allow

efficient indexed-based array construction for mutable arrays.

Hence, computationally demanding Haskell array code

typically adopts a two-phase array life cycle:

(1) arrays are allocated as mutable arrays and

 initialised using in-place array update;

(2) they are frozen by making them immutable,

 once initialised,

https://www.tweag.io/posts/2017-09-27-array-package.html

Two phase arrays (Mutable copy approach)

Mutability and
Strictness (1C)

16 Young Won Lim
6/13/20

to implement custom array algorithms

Haskell has a simple array API in the Data.Array module.

These are immutable, boxed, and non-strict.

This allows for the elegant, high-level description

of many array algorithms,

But boxing and non-strictness

give suboptimal performances

for compute-intensive applications

.

https://www.tweag.io/posts/2017-09-27-array-package.html

Immutable array type

Mutability and
Strictness (1C)

17 Young Won Lim
6/13/20

Mutable arrays come in various flavours,

distinguished by the monad

in which the array operations take place.

Usually, either IO or ST, and the array package provides

both boxed and unboxed variants for both monads.

mutable boxed IOArray

mutable unboxed IOUArray

mutable boxed STArray

mutable unboxed STUArray.

https://www.tweag.io/posts/2017-09-27-array-package.html

Mutable array types

Mutability and
Strictness (1C)

18 Young Won Lim
6/13/20

The above definition of generate uses STUArray to initialise the array,

and then, freezes it into a UArray, which is returned.

STUArray Mutable Unboxed Array

Uarray Immutable Unboxed Array

The choice of STUArray is implicit in the use of runSTUArray,

which executes the code in the state transformer monad ST

and freezes the STUArray into a UArray

https://www.tweag.io/posts/2017-09-27-array-package.html

Two phase array usage example

Mutability and
Strictness (1C)

19 Young Won Lim
6/13/20

Boxed vs. Unboxed

Mutability and
Strictness (1C)

20 Young Won Lim
6/13/20

For lazy evaluation,

values are represented at runtime as pointers to

either their value, or

code for computing their value.

Box :

this extra level of indirection

any extra tags needed by the runtime

The default boxed arrays consist of

many of these boxes,

each of which may compute its value separately.

https://www.tweag.io/posts/2017-09-27-array-package.html

Boxed Arrays

Mutability and
Strictness (1C)

21 Young Won Lim
6/13/20

the expressiveness of non-strict arrays comes at a price,

especially if the array elements are simple numbers (values).

Instead of direct storing those numeric elements,

non-strict arrays require a boxed representation

the elements are pointers to heap objects

containing the numeric values.

This additional indirection requires extra memory and

drastically reduces the efficiency of array access,

especially in tight loops.

https://www.tweag.io/posts/2017-09-27-array-package.html

Boxed representation

thunks

Boxed

a value that is
yet to be evaluated

pointer box

Mutability and
Strictness (1C)

22 Young Won Lim
6/13/20

allow recursively defining

an array's elements in terms of one another

can compute only the specific elements of the array

which are ever needed

for large arrays, it costs a lot in terms of overhead,

and if the entire array is always needed, it can be a waste.

https://www.tweag.io/posts/2017-09-27-array-package.html

Boxed Arrays – pros and cons

Mutability and
Strictness (1C)

23 Young Won Lim
6/13/20

Unboxed arrays are more like arrays in C -

they contain just the plain values

without this extra level of indirection,

an array of 1024 values of type Int32

will use only 4 KB (=4*1024) of memory.

https://www.tweag.io/posts/2017-09-27-array-package.html

Unboxed Arrays

Mutability and
Strictness (1C)

24 Young Won Lim
6/13/20

indexing of unboxed arrays can be significantly faster.

can only have plain values having a fixed size

can not have types defined with variable size

without the extra level of indirection,

all of the elements must be evaluated,

when the array is evaluated,

no benefits of lazy evaluation.

can not define recursively the array elements

in terms of each other

https://www.tweag.io/posts/2017-09-27-array-package.html

Unboxed Arrays – pros and cons

Mutability and
Strictness (1C)

25 Young Won Lim
6/13/20

While boxed representation can be used in

both strict and non-strict data structures.

Generally non-strict structures typically require boxing.

non-strict boxed Data.Array.IArray.IArray Immutable

strict unboxed Data.Array.Unboxed.Uarray Immutable

the unboxed array element type

is restricted to basic types (fixed size)

such as integral and floating-point numeric types

https://www.tweag.io/posts/2017-09-27-array-package.html

Non-strict boxed vs. Strict unboxed arrays

Mutability and
Strictness (1C)

26 Young Won Lim
6/13/20

wavefront example

the recursive definition of the array arr.

arr!(i,j-1) + arr!(i-1,j-1) + arr!(i-1,j)

the elements are accessed

to the left, top, and top-left of the current one

Such a recursive dependency is

only valid for a non-strict data structure.

non-strict boxed

https://www.tweag.io/posts/2017-09-27-array-package.html

Applications which require non-strictness

Mutability and
Strictness (1C)

27 Young Won Lim
6/13/20

Strict v.s Non-strict (Lazy)

Mutability and
Strictness (1C)

28 Young Won Lim
6/13/20

Strict evaluation, or eager evaluation

expressions are evaluated

as soon as they are bound to a variable.

with strict evaluation,

when x = 3 * 7 is read,

3 * 7 is immediately computed

and 21 is bound to x.

https://en.wikibooks.org/wiki/Haskell/Strictness

Strict (Eager) Evaluation

Mutability and
Strictness (1C)

29 Young Won Lim
6/13/20

Conversely, with lazy evaluation

values are computed

only when they are needed.

In the example x = 3 * 7,

3 * 7 will not be evaluated until it's needed,

like if you needed to output the value of x.

https://en.wikibooks.org/wiki/Haskell/Strictness

Lazy (Non-strict) Evaluation

Mutability and
Strictness (1C)

30 Young Won Lim
6/13/20

In most languages, calling a function

with non-prime-expressions as arguments (atomic values)

requires strict evaluation

foo (x + 1, bar(3, 7));

- first evaluate all the arguments x+1 and bar(3,7)

 - and then call foo on the results.

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

Function call and argument evaluation

Mutability and
Strictness (1C)

31 Young Won Lim
6/13/20

The prime (') is treated like any number in variable names,

i.e. unless it's at the beginning you can use it just like a letter.

Hence names such as foldl';

generally those will refer some kind of "alternative" of a similar thing,

But surrounding a function with backticks

lets you use it like an infix operator, e.g.

plus :: Int -> Int -> Int

plus = (+)

 Prelude> 4 `plus` 5

 9

https://stackoverflow.com/questions/22873663/what-does-prime-mean-in-haskell

Prime expression in Haskell

Mutability and
Strictness (1C)

32 Young Won Lim
6/13/20

lazy evaluation : a core feature of GHC

It doesn't matter whether you have monads or anything involved.

foo (x + 1, bar(3, 7));

Haskell just packages up each argument in a data structure

containing everything needed to compute it later, code ….. thunks

and passes those data structures into foo,

they (data structiure: thunks) are only evaluated

if foo requires access to their values.

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

Lazy Evaluation

x + 1 bar(3, 7)

Mutability and
Strictness (1C)

33 Young Won Lim
6/13/20

lazy evaluation is applied almost everywhere in Haskel

takeWhile (\x -> x < 4) [1..]

can returns [1,2,3]

without getting stuck evaluating the infinite list,

with no monads involved.

takeWhile :: (a -> Bool) -> [a] -> [a]

creates a list from another one, it inspects the original list

and takes from it its elements to the moment

when the condition fails, then it stops processing

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

Lazy evaluation of an infinite list

Mutability and
Strictness (1C)

34 Young Won Lim
6/13/20

By default, Haskell uses lazy evaluation

when you call a function,

the body won't execute immediately,

rather it will return something (thunks)

that represents executing the body.

The body will only be actually executed

when the result of the function

is used in an IO computation,

either directly or via being used in another function

or chain of functions that is used in an IO computation.

https://www.reddit.com/r/programming/comments/3sux1d/strict_haskell_xstrict_has_landed/

Lazy evaluation in function calls – thunks

thunks
unevaluated function executions

Mutability and
Strictness (1C)

35 Young Won Lim
6/13/20

Having unevaluated function executions

(thunks) makes it harder to reason

about memory usage and performance.

Bookkeeping for these thunks can also

impose a slight performance penalty.

Strict Haskell gives Haskell strict evaluation,

which is the kind of evaluation most other languages have,

and hence makes it easier to reason about performance.

https://www.reddit.com/r/programming/comments/3sux1d/strict_haskell_xstrict_has_landed/

Strict evaluation for performance

strict evaluation

lazy evaluation ………. thunks

Mutability and
Strictness (1C)

36 Young Won Lim
6/13/20

Haskell is a non-strict language,

and most implementations use a strategy

called laziness to run your program.

laziness = non-strictness + sharing

Laziness can be a useful tool

for improving performance,

but sometimes it reduces performance

by adding a constant overhead to everything.

https://wiki.haskell.org/Performance/Strictness

Performance issues of laziness

Mutability and
Strictness (1C)

37 Young Won Lim
6/13/20

Sharing means that temporary data is physically stored,

if it is used multiple times.

let x = sin 2

in x*x

x is used twice as factor in the product x*x.

Due to referential transparency it does not play a role,

whether sin 2 is computed twice or

whether it is computed once and

the result is stored and reused.

https://wiki.haskell.org/Performance/Strictness

Sharing

Mutability and
Strictness (1C)

38 Young Won Lim
6/13/20

However, when you let the Haskell compiler decide

whether to compute or to store the result.

sharing can be the wrong way,

if a computation is cheap but storing the result is huge.

[0..1000000] ++ [0..1000000]

where it is much cheaper to compute the list of numbers

than to store it with full length.

https://wiki.haskell.org/Performance/Strictness

Sharing when computation is cheap

Mutability and
Strictness (1C)

39 Young Won Lim
6/13/20

Because of laziness, the compiler can't

evaluate a function argument

and pass the value to the function,

it has to record the expression in the heap

in a suspension (or thunk)

in case it is evaluated later.

storing and evaluating suspensions is costly,

and unnecessary if the expression was going

to be evaluated anyway.

https://wiki.haskell.org/Performance/Strictness

Cost of thunks

Mutability and
Strictness (1C)

40 Young Won Lim
6/13/20

An expression language is said to have

non-strict semantics

if expressions can have a value

even if some of their subexpressions do not.

strict semantics

 if any subexpression fail to have a value,

the whole expression fails with it.

Haskell has non-strict semantics by default:

nearly every other language has strict semantics

https://wiki.haskell.org/Non-strict_semantics

Non-Strict and Strict Semantics

sub1 sub2 sub3 sub4

Mutability and
Strictness (1C)

41 Young Won Lim
6/13/20

strict semantics

the opposite of non-strict semantics.

an undefined argument of a function

leads to an undefined function value.

forall f. f undefined = undefined

argument returned value

It may be implemented by eager evaluation.

https://wiki.haskell.org/Sstrict_semantics

Strict Semantics

Mutability and
Strictness (1C)

42 Young Won Lim
6/13/20

To evaluate an expression,

replace all function applications by their definitions.

The order in which you do this

does not matter much, but it's still important:

start with the outermost application

and proceed from left to right;

this is called lazy evaluation.

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Order of lazy evaluations

Mutability and
Strictness (1C)

43 Young Won Lim
6/13/20

Non-strictness means that reduction

(the mathematical term for evaluation)

proceeds from the outside in,

so if you have (a+(b*c))

then first you reduce the +,

then you reduce the inner (b*c).

Strict languages work the other way around,

starting with the innermost brackets and working outwards.

https://wiki.haskell.org/Lazy_vs._non-strict

Order of evaluations – strict vs. non-strict

((((()))))

Non-strict

Strict

from the outside in

from the inside out

Mutability and
Strictness (1C)

44 Young Won Lim
6/13/20

Direction of evaluation matters to the semantics

Consider an expression that evaluates to bottom

any strict language (Strict case)

that starts at the inside and works outwards

will always find that bottom value,

and hence the bottom will propagate outwards.

if you start from the outside and work inside (Non-strict case)

then some of the sub-expressions

are eliminated by the outer reductions,

so they may not be evaluated and

you don't get bottom

https://wiki.haskell.org/Lazy_vs._non-strict

Order of evaluations – the bottom value

(i.e. an error or endless loop)

((((()))))

Non-strict

Strict

Mutability and
Strictness (1C)

45 Young Won Lim
6/13/20

Direction of evaluation matters to the semantics

Consider an expression that evaluates to bottom

any strict language (Strict case)

the bottom will propagate outwards.

Any non-strict language (Non-strict case)

The bottom may be omitted

https://wiki.haskell.org/Lazy_vs._non-strict

Order of evaluations – the bottom value

(i.e. an error or endless loop)

((((()))))

Non-strict

Strict

Mutability and
Strictness (1C)

46 Young Won Lim
6/13/20

Lazy evaluation means

only evaluating an expression when its results are needed

(note the shift from "reduction" to "evaluation").

So when the evaluation engine sees an expression

it builds a thunk data structure containing

whatever values are needed to evaluate the expression,

plus a pointer to the expression itself.

When the result is actually needed

the evaluation engine calls the expression

and then replaces the thunk with the result for future reference.

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy evaluation – thunks

Mutability and
Strictness (1C)

47 Young Won Lim
6/13/20

Obviously there is a strong correspondence

between a thunk and a partial evaluation

Hence in most cases

the terms lazy and non-strict are synonyms.

But not quite. For instance you could imagine

an evaluation engine on highly parallel hardware

that fires off sub-expression evaluation eagerly,

but then throws away results that are not needed.

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict

Mutability and
Strictness (1C)

48 Young Won Lim
6/13/20

In practice Haskell is not a purely lazy language:

for instance pattern matching is usually strict

So trying a pattern match forces evaluation

to happen at least far enough to accept or reject the match.

you can prepend a ~ in order to make pattern matches lazy

https://wiki.haskell.org/Lazy_vs._non-strict

Strictness in pattern matching

Mutability and
Strictness (1C)

49 Young Won Lim
6/13/20

In practice Haskell is not a purely lazy language:

the strictness analyzer also looks for cases

where sub-expressions are always

required by the outer expression,

and converts those into eager evaluation.

It can do this because

the semantics (in terms of "bottom") don't change.

https://wiki.haskell.org/Lazy_vs._non-strict

Strictness in strictness analyzer

Mutability and
Strictness (1C)

50 Young Won Lim
6/13/20

Programmers can also use the seq primitive

to force an expression to evaluate regardless of

whether the result will ever be used.

$! is defined in terms of seq.

https://wiki.haskell.org/Lazy_vs._non-strict

Seq

Mutability and
Strictness (1C)

51 Young Won Lim
6/13/20

$! is strict application,

f $! x = x `seq` f x

Consider the following example

do state1 <- act state

 dispatch $! state1

the difference from dispatch state1 is

that state1 is guaranteed to be evaluated and

not just kept as a lazy thunk.

forcing evaluation in this way can be

important for efficiency issues, such as preventing memory leaks.

https://stackoverflow.com/questions/25987726/what-does-mean-do-in-haskell

$! – strict application

Mutability and
Strictness (1C)

52 Young Won Lim
6/13/20

Non-strict refers to semantics: the mathematical meaning of an expression. The world to which

non-strict applies has no concept of the running time of a function, memory consumption, or even

a computer. It simply talks about what kinds of values in the domain map to which kinds of

values in the codomain. In particular, a strict function must map the value ("bottom" -- see the ⊥ ("bottom" -- see the

semantics link above for more about this) to ; a non strict function is allowed not to do this.⊥ ("bottom" -- see the

https://stackoverflow.com/questions/7140978/haskell-how-does-non-strict-and-lazy-differ

$! – strict application

Mutability and
Strictness (1C)

53 Young Won Lim
6/13/20

Lazy refers to operational behavior: the way code is executed on a real computer. Most

programmers think of programs operationally, so this is probably what you are thinking. Lazy

evaluation refers to implementation using thunks -- pointers to code which are replaced with a

value the first time they are executed. Notice the non-semantic words here: "pointer", "first time",

"executed".

https://stackoverflow.com/questions/7140978/haskell-how-does-non-strict-and-lazy-differ

$! – strict application

Mutability and
Strictness (1C)

54 Young Won Lim
6/13/20

Lazy evaluation gives rise to non-strict semantics, which is why the concepts seem so close

together. But as FUZxxl points out, laziness is not the only way to implement non-strict

semantics.

https://stackoverflow.com/questions/7140978/haskell-how-does-non-strict-and-lazy-differ

$! – strict application

Mutability and
Strictness (1C)

55 Young Won Lim
6/13/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55

