Differentiation of Continuous Functions

Young W Lim

Oct 02, 2024

Approximations of a first derivative

Copyright (c) 2024 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Introduction to Matrix Algebra, Autar Kaw https://ma.mathforcollege.com

Outline

- Approximations of a first derivative
 - Forward Difference Approximation
 - Backward Difference Approximation
 - Taylor Series
 - Central Divided Difference

Outline

- Approximations of a first derivative
 - Forward Difference Approximation
 - Backward Difference Approximation
 - Taylor Series
 - Central Divided Difference

Forward Difference Approximation (1)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

for a finite $\Delta x > 0$

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Forward Difference Approximation (2)

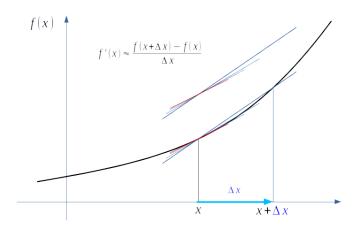


Figure: forward difference approximation

Forward Difference Approximation (3)

a forward difference approximation as you are taking a point forward from x.

To find the value of f'(x) at $x = x_i$, we may choose another point Δx forward as $x = x_{i+1}$.

$$f'(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$$

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{\Delta x}$$
$$= \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Outline

- Approximations of a first derivative
 - Forward Difference Approximation
 - Backward Difference Approximation
 - Taylor Series
 - Central Divided Difference

Backward Difference Approximation (1a)

forward difference approximation

for a finite $\Delta x > 0$,

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

backward difference approximation

for a finite $\Delta x < 0$, then $-\Delta x > 0$,

$$f'(x) \approx \frac{f(x - \Delta x) - f(x)}{-\Delta x}$$
$$= \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Backward Difference Approximation (1b)

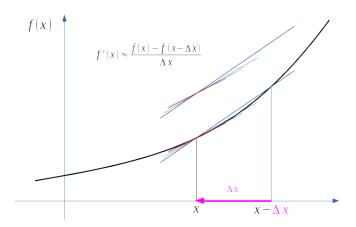


Figure: backward difference approximation (a)

Backward Difference Approximation (2a)

forward difference approximation

for a finite $\Delta x > 0$,

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

backward difference approximation

for a finite $\Delta x > 0$, then $-\Delta x < 0$,

$$f'(x) \approx \frac{f(x) - f(x - \Delta x)}{x - (x - \Delta x)}$$
$$= \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Backward Difference Approximation (2b)

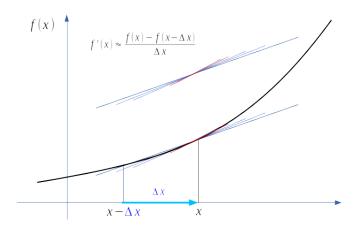


Figure: backward difference approximation (b)

Backward Difference Approximation (3)

a backward difference approximation as you are taking a point backward from x.

To find the value of f'(x) at $x = x_i$, we may choose another point Δx backwad as $x = x_{i-1}$.

$$f'(x) \approx \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{\Delta x}$$

= $\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

Outline

- Approximations of a first derivative
 - Forward Difference Approximation
 - Backward Difference Approximation
 - Taylor Series
 - Central Divided Difference

Taylor Series (1)

the Taylor series of a function f(x), that is infinitely differentiable at a point a is the power series

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

Taylor Series (2)

If f(x) is given by a <u>convergent</u> <u>power series</u> in an open disk centred at <u>a</u>, it is said to be *analytic* in this region.

Thus, for x in this region, f is given by a convergent power series

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

Approximating the first derivative

A Taylor expansion approximates f(x), using $f(a), f'(a), f''(a), \cdots$,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

• for forward difference approximatin

$$x_i = a$$
, $x_{i+1} = x$, $\Delta x = x_{i+1} - x_i$

• for backward difference approximatin

$$x_i = a, \quad x_{i-1} = x, \quad \Delta x = x_i - x_{i-1}$$

Deriving Forward Difference Approximation (1)

A Taylor expansion approximates f(x), using $f(a), f'(a), f''(a), \cdots$,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

Let $x_i = a$ and $x_{i+1} = x$ (from a toward x, approximate $f(x_{i+1})$, using information at x_i)

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \cdots$$

Substituting for convenience $\Delta x = x_{i+1} - x_i$

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \cdots$$

Deriving Forward Difference Approximation (2)

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \cdots$$

$$f(x_{i+1}) = f(x_{i}) + f'(x_{i})(x_{i+1} - x_{i}) + \frac{f''(x_{i})}{2!}(x_{i+1} - x_{i})^{2} + \cdots$$

$$f(x_{i+1}) = f(x_{i}) + \{f'(x_{i})(\Delta x)\} + \frac{f''(x_{i})}{2!}(\Delta x)^{2} + \cdots$$

$$\frac{f(x_{i+1}) - f(x_{i})}{\Delta x} - \frac{f''(x_{i})}{2!}(\Delta x)^{2} - \cdots = \{f'(x_{i})(\Delta x)\}$$

$$\frac{f(x_{i+1}) - f(x_{i})}{\Delta x} - \frac{f''(x_{i})}{2!}(\Delta x) - \cdots = f'(x_{i})$$

$$\frac{f(x_{i+1}) - f(x_{i})}{\Delta x} + O(\Delta x) = f'(x_{i})$$

Deriving Backward Difference Approximation (1)

A Taylor expansion approximates f(x), using $f(a), f'(a), f''(a), \cdots$,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

Let $x_i = a$ and $x_{i-1} = x$ (from a toward x, approximate $f(x_{i-1})$, using information at x_i)

$$f(x_{i-1}) = f(x_i) + f'(x_i)(x_{i-1} - x_i) + \frac{f''(x_i)}{2!}(x_{i-1} - x_i)^2 + \cdots$$

Substituting for convenience $\Delta x = x_i - x_{i-1}$

$$f(x_{i-1}) = f(x_i) - f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 - \cdots$$

Deriving Forward Difference Approximation (2)

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \cdots$$

$$f(x_{i-1}) = f(x_{i}) + f'(x_{i})(x_{i-1} - x_{i}) + \frac{f''(x_{i})}{2!}(x_{i-1} - x_{i})^{2} + \cdots$$

$$f(x_{i-1}) = f(x_{i}) - \{f'(x_{i})(\Delta x)\} + \frac{f''(x_{i})}{2!}(\Delta x)^{2} - \cdots$$

$$\{f'(x_{i})(\Delta x)\} = \frac{f(x_{i}) - f(x_{i-1})}{\Delta x} + \frac{f''(x_{i})}{2!}(\Delta x)^{2} - \cdots$$

$$f'(x_{i}) = \frac{f(x_{i}) - f(x_{i-1})}{\Delta x} + \frac{f''(x_{i})}{2!}(\Delta x) - \cdots$$

$$f'(x_{i}) = \frac{f(x_{i}) - f(x_{i-1})}{\Delta x} + O(\Delta x)$$

Forward and Backward Approximation

• for forward difference approximatin

$$x_i = a$$
, $x_{i+1} = x$, $\Delta x = x_{i+1} - x_i$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} + O(\Delta x)$$

for forward difference approximatin

$$x_i = a$$
, $x_{i-1} = x$, $\Delta x = x_i - x_{i-1}$

$$f'(\mathbf{x}_i) = \frac{f(\mathbf{x}_i) - f(\mathbf{x}_{i-1})}{\Delta x} + O(\Delta x)$$

Approximation Errors

- the $O(\Delta x)$ term shows that the error in the approximation is of the order of Δx
- both forward and backward difference approximation of the first derivative are accurate in the order of $O(\Delta x)$
- to get better approximations
 the Central divided difference approximation of the first derivative.

Outline

- Approximations of a first derivative
 - Forward Difference Approximation
 - Backward Difference Approximation
 - Taylor Series
 - Central Divided Difference

Deriving Central Divide Approximation (1)

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

Forward difference approximation:

Let
$$x_i = a$$
 and $x_{i+1} = x$

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \cdots$$

Backward difference approximation :

Let
$$x_i = a$$
 and $x_{i-1} = x$

$$f(\mathbf{x}_{i-1}) = f(\mathbf{x}_i) + f'(\mathbf{x}_i)(\mathbf{x}_{i-1} - \mathbf{x}_i) + \frac{f''(\mathbf{x}_i)}{2!}(\mathbf{x}_{i-1} - \mathbf{x}_i)^2 + \cdots$$

Deriving Central Divide Approximation (2)

Forward difference approximation :

substitute $\Delta x_1 = x_{i+1} - x_i$

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x_1) + \frac{f''(x_i)}{2!}(\Delta x_1)^2 + \cdots$$

Backward difference approximation :

substitute $\Delta x_2 = x_i - x_{i-1}$

$$f(x_{i-1}) = f(x_i) - f'(x_i)(\Delta x_2) + \frac{f''(x_i)}{2!}(\Delta x_2)^2 - \cdots$$

Deriving Central Divide Approximation (3)

the same $\Delta x = \Delta x_1 = \Delta x_2$ is used in forward and backward difference approximation

	backward		Δχ		forward	
i = 1	$f(x_0)$	←	$x_1 - x_0$	\rightarrow	$f(x_1)$	i = 0
i = 2	$f(x_1)$	←	$x_2 - x_1$	\rightarrow	$f(x_2)$	i = 1
i = 3	$f(x_2)$	←	$x_3 - x_2$	\rightarrow	$f(x_3)$	i = 2
i = 4	$f(x_3)$	←	$x_1 - x_3$	\rightarrow	$f(x_4)$	i = 3
i = 5	$f(x_4)$	←	$x_1 - x_4$	\rightarrow	$f(x_5)$	i = 4
i = 6	$f(x_5)$	←	$x_1 - x_5$	\rightarrow	$f(x_6)$	i = 5
	:		:		:	

Deriving Central Divide Approximation

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \frac{f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$
(1)
$$f(x_{i-1}) = f(x_i) - f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 - \frac{f^{(3)}(x_i)}{2!}(\Delta x)^3 + \cdots$$
(2)

subtracting eq(2) from eq(1)

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)(\Delta x) + \frac{2f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$

$$2f'(x_i)(\Delta x) = f(x_{i+1}) - f(x_{i-1}) - \frac{2f^{(3)}(x_i)}{3!}(\Delta x)^3 - \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2(\Delta x)} - \frac{f^{(3)}(x_i)}{3!}(\Delta x)^2 - \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O((\Delta x)^2)$$

Central Divided Approximation

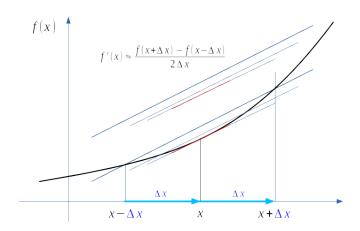


Figure: central difference approximation

Higher Order Derivatives

Forward Difference Approximation:

Let $x_{i+1} = x_i + \Delta x$

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \frac{f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$
 (3)

Let $x_{i+2} = x_i + 2\Delta x$

$$f(\mathbf{x}_{i+2}) = f(\mathbf{x}_i) + f'(\mathbf{x}_i)(2\Delta x) + \frac{f''(\mathbf{x}_i)}{2!}(2\Delta x)^2 + \frac{f^{(3)}(\mathbf{x}_i)}{3!}(2\Delta x)^3 + \cdots$$
 (4)

Let eq(4) - 2*eq(3)

$$f(x_{i+2}) - 2f(x_{i+1}) = -f(x_i) + f''(x_i)(\Delta x)^2 + f^{(3)}(x_i)(\Delta x)^3 + \cdots$$
$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{(\Delta x)^2} - f^{(3)}(x_i)(\Delta x)^3$$

Tangent Lines

- as $h \to 0$, $Q \to P$ and the secant line \to the tangent line
- the slope of the tangent line

$$m_{tangent} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a}$$
$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Forward Difference Approximation Backward Difference Approximatio Taylor Series Central Divided Difference

Forward Difference Approximation Backward Difference Approximatio Taylor Series Central Divided Difference