L. Vu-Quoc, University of Florida, Spring 2013

8-0

Method

2 un	known reactions	R_A	R_B		
FBD	1 1 equilibrium eq.				
$\sum_{i} I$	$F_{i,y} = 0$				(1) \sum_i F_{i,y} = 0
Nee	d to use deformation	n to fin	d 1 mo	ore eq.	
FBD	2 $P_{KB},~\delta_{KB}$ in	n terms	s of	R_B	P_{KB} , \ \delta_{KB}
FBD	3 $P_{CK}, \ \delta_{CK}$ in	n terms	s of	R_B	
FBD	4 P_{DC}, δ_{DC} in	n terms	s of	R_B	
FBD	5 $P_{AC}, \ \delta_{AD}$ in	n terms	s of	R_B	
Poir	nt B is fixed; thus				
δ_B	$= 0 = \delta_{KB} + \delta_{CK} \cdot$	$+ \delta_{DC}$	$+ \delta_A$	D	(2)
(2)	has one unknown R_B	\delta_B	= 0 = \delta_{KE	8} + \delta_{CK} + \de R_B	lta_{DC} + \delta_{AD}
(1)-((2) are 2 eqs for 2 ur	nknown	s RA	R_B	

Reco	all:	
	P δ	PL
σ =	$= E\epsilon \Rightarrow \frac{1}{\Lambda} = E\frac{1}{\Lambda} =$	$\Rightarrow \delta = \frac{1}{\sqrt{E}}$ (1)
	A L	frac{P}{A} = F \frac{\delta}{1} \Rightarrow \delta = \frac{P \ 1}{A \ F}
For	multiple bar segments	
	$P_i L_i$	
$\delta_i =$	$=\frac{-i-i}{AE}$	(2)
	$A_i E_i$	\delta_i = \frac{P_i L_i}{A_i E_i}
	$\nabla P_i L_i$	
$\delta =$	$= \sum_{i} \delta_{i} = \sum_{i} \frac{-i}{A E}$	(3)
	$\frac{2}{i}$ $\frac{2}{i}A_iE_i$	\delta = \sum_i \delta_i = \sum_i \frac{P_i L_i}{A_i E_i}

 Pause video NOW !
Work out the next step
on your own first
discuss with teammates if you get stuck
then continue to watch the video

Computation

FBD 2
$$P_{KB} = R_B$$
 (1)
 $P_{L(RB) = R_B}$ (2)
 $\delta_{KB} = -\frac{P_{KB} L_{KB}}{A_{KB} E_{KB}} = -\frac{R_B L}{A_{CB} E}$ (2)
 $V^{delta_{(RB) = - (fred}P_{(RB) \setminus L_{(RB)}(A_{(RB) \setminus E_{(RB)} = - (fred(R_B \setminus L)(A_{(CB) \setminus E}))}}$
(2)
FBD 3 $P_{CK} = R_B - F_K$ (3)
 $P_{L(CQ) = R_B - F_K}$ (3)
 $P_{L(CQ) = R_B - F_K}$ (4)
 $\delta_{CK} = -\frac{P_{CK} L_{CK}}{A_{CK} E_{CK}} = -\frac{(R_B - F_K) L}{A_{CB} E}$ (4)
FBD 4 $P_{DC} = R_B - F_K$ (5)
 $\delta_{DC} = -\frac{P_{DC} L_{DC}}{A_{DC} E_{DC}} = -\frac{(R_B - F_K) L}{A_{AC} E}$ (6)
 $V^{delta_{(DC) = - (fred(P_{-(DC) \setminus L_{-(DC)})(A_{-(DC) \setminus E_{-(DC)}) = - (fred(R_B - F_{-K}) \setminus L)(A_{-(AC) \setminus E})}}$
(6)
FBD 5 $P_{AD} = R_B - F_K - F_D$ (7)
 $\delta_{AD} = -\frac{P_{AD} L_{AD}}{A_{AD} E_{AD}} = -\frac{(R_B - F_K - F_D) L}{A_{AC} E}$ (8)
 $V^{delta_{(AD) = - (fred(P_{-(AD) \setminus L_{-(AD)})(A_{-(AD) \setminus E_{-(AD)}) = - (fred(R_B - F_K - F_D) L)})$ (4)

Total displacement at B

(2) p.8-3: $\delta_B = 0 = \delta_{KB} + \delta_{CK} + \delta_{DC} + \delta_{AD}$

Rearrange to put (a) all terms with the known applied forces together, and (b) all terms with the unknown reaction at B together.

$$\delta_{B} = 0 = \delta_{L} + \delta_{R} \qquad (1)$$

$$\delta_{L} \quad \text{all terms with the known applied forces (put all these terms on the Left, thus the subscript "L")}$$

$$\delta_{R} \quad \text{all terms with the unknown reaction at B (put all these terms on the Right, thus the subscript "R")}$$

$$\delta_{L} = \frac{F_{K}L}{A_{CB}E} + \frac{F_{K}L}{A_{AC}E} + \frac{(F_{K} + F_{D})L}{A_{AC}E} \qquad (2)$$

$$\delta_{R} = -\frac{R_{B}L}{A_{CB}E} - \frac{R_{B}L}{A_{CB}E} - \frac{R_{B}L}{A_{CB}E} - \frac{R_{B}L}{A_{AC}E} = \frac{R_{B}L}{A_{AC}E} \qquad (3)$$

(1)-(3) p.8-6 can be interpreted pictorially as a "superposition" of 2 cases:

Cancel the common factor L / E in (1)-(3) p.8-6; this the problem is independent of length L and Young's modulus E.

 Pause video NOW !
Work out the next step
on your own first
discuss with teammates if you get stuck
then continue to watch the video

A little more simplification before computation:

$$R_{B} = \frac{F_{D}}{2} \frac{2A_{AC} + 5A_{CB}}{A_{AC} + A_{CB}} \qquad (1)$$

$$R_{B} = \sqrt{\frac{F_{D}}{2} - \frac{2A_{AC} + 5A_{CB}}{A_{AC} + A_{CB}}} \qquad (1)$$

$$R_{B} = \sqrt{\frac{F_{D}}{2} - \frac{A_{AC} + 5A_{CB}}{A_{AC} + A_{CB}}} \qquad (1)$$
Note that the 2nd factor in (1) is dimensionless, i.e.,

you don't need to convert mm² to m² (waste of time !).

Also note that (1) satisfies the principle of dimensional homogeneity, i.e., dimension of lhs is the same as the dimension of the rhs.

So you don't have to convert kN into N (waste of time !)

Now plug in the numbers and verify for yourself that you obtain the same result as in Beer et al 2012 p.80.

As in delay gratification, <u>delay the computation</u> as much as possible until the very end of the problem formulation.