
Young Won Lim
1/27/20

Addressing Modes (3A)

Young Won Lim
1/27/20

 Copyright (c) 2014 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Assembly Programming
(3A) Addressing Modes

3 Young Won Lim
1/27/20

Based on

D.A. Patterson & J.H. Hennessy, Computer Organization and Design
(ARM ed)

Assembly Programming
(3A) Addressing Modes

4 Young Won Lim
1/27/20

Addressing Modes

1. Immediate ADD r2, r0, #5
2. Register ADD r2, r0, r1
3. Scaled register ADD r2, r0, r1, LSL #2

4. Immediate offset pre-indexed without writeback LDR r2, [r0, #4]
5. Register offset pre-indexed without writeback LDR r2, [r0, r1]
6. Scaled register offset pre-indexed without writeback LDR, r2, [r0, r1, LSL #2]

7. Immediate offset pre-indexed with writeback LDR r2, [r0, #4]!
8. Reigster offset pre-indexed with writeback LDR r2, [r0, r1]!
9. Scaled register offset pre-indexed with writeback LDR r2, [r0, r1, LSL #2]!

10. Immediage offset post-indexed LDR r2, [r0] #4
11. Register offset post-indexed LDR r2, [r0], r1
12. Register offset post-indexed LDR r2, [r0], r1, LSL #2

Assembly Programming
(3A) Addressing Modes

5 Young Won Lim
1/27/20

Addressing mode examples (1)

1. Immediate
ADD r2, r0, #5 r2 ← r0 + 5

2. Register
ADD r2, r0, r1 r2 ← r0 + r1

3. Scaled register
ADD r2, r0, r1, LSL #2 r2 ← r0 + (r1 << 2)

Assembly Programming
(3A) Addressing Modes

6 Young Won Lim
1/27/20

1. Immediate Operand

ADD r2, r0, #5 r2 ← r0 + 5

1st operand : register r0
2nd operand : immediate value #5

Assembly Programming
(3A) Addressing Modes

7 Young Won Lim
1/27/20

2. Register Operand

ADD r2, r0, r1 r2 ← r0 + r1

1st operand : register r0
2nd operand : register r1

Assembly Programming
(3A) Addressing Modes

8 Young Won Lim
1/27/20

3. Scaled Register Operand

ADD r2, r0, r1, LSL #2 r2 ← r0 + (r1 << 2)

1st operand : register r0
2nd operand : register r1 << 2

Assembly Programming
(3A) Addressing Modes

9 Young Won Lim
1/27/20

Addressing mode examples (2)

4. Immediate offset pre-indexed without writeback
LDR r2, [r0, #4] adr ← r0 + 4;

r2 ← M[adr]

5. Register offset pre-indexed without writeback
LDR r2, [r0, r1] adr ← r0 + r1;

r2 ← M[adr]

6. Scaled register offset pre-indexed without writeback
LDR, r2, [r0, r1, LSL #2] adr ← r0 + (r1<<2);

r2 ← M[adr]

Assembly Programming
(3A) Addressing Modes

10 Young Won Lim
1/27/20

4. Immediate Offset Pre-index without Writeback

LDR r2, [r0, #4] adr ← r0 + 4; r2 ← M[adr]

adding operation before a memory access
base register r0 + immediate offset #4

 the added address is used for a memory access

without the ! suffix, the base register r0 is not updated

when traversing an array sequentially

PC relative addressing

Assembly Programming
(3A) Addressing Modes

11 Young Won Lim
1/27/20

5. Register Offset Pre-indexed without Writeback

LDR r2, [r0, r1] adr ← r0 + r1; r2 ← M[adr]

adding operation before a memory access
base register r0 + offset register r1

 the added address is used for a memory access

without the ! suffix, the base register r0 is not updated

index into an array
array – base
index – offset

Assembly Programming
(3A) Addressing Modes

12 Young Won Lim
1/27/20

6. Scaled Register Offset Pre-indexed without Writeback

LDR, r2, [r0, r1, LSL #2] adr ← r0 + (r1 << 2); r2 ← M[adr]

adding operation before a memory access
base register r0 + (offset register r1 << 2)

 the added address is used for a memory access

without the ! suffix, the base register r0 is not updated

the offset register r1 is never changed

index into an array
making an array index into a byte address

array – base
index – offset
index * 4 – byte offset address

Assembly Programming
(3A) Addressing Modes

13 Young Won Lim
1/27/20

Addressing mode examples (3)

7. Immediate offset pre-indexed with writeback
LDR r2, [r0, #4]! r0 ← r0 + 4;

r2 ← M[r0]

8. Reigster offset pre-indexed with writeback
LDR r2, [r0, r1]! r0 ← r0 + r1;

r2 ← M[r0]

9. Scaled register offset pre-indexed with writeback
LDR r2, [r0, r1, LSL #2]! r0 ← r0 + (r1 << 2);

r2 ← M[r0]

Assembly Programming
(3A) Addressing Modes

14 Young Won Lim
1/27/20

7. Immediate Offset Pre-index with Writeback

LDR r2, [r0, #4]! r0 ← r0 + 4; r2 ← M[r0]

adding operation before a memory access
base register r0 + immediate offset #4

 the added address is used for a memory access

 base register r0 is updated with the added address

Assembly Programming
(3A) Addressing Modes

15 Young Won Lim
1/27/20

8. Register Offset Pre-indexed with Writeback

LDR r2, [r0, r1]! r0 ← r0 + r1; r2 ← M[r0]

adding operation before a memory access
base register r0 + offset register r1

 the added address is used for a memory access

 base register r0 is updated with the added address

Assembly Programming
(3A) Addressing Modes

16 Young Won Lim
1/27/20

9. Scaled Register Offset Pre-indexed with Writeback

LDR, r2, [r0, r1, LSL #2]! r0 ← r0 + (r1 << 2); r2 ← M[r0]

adding operation before a memory access
base register r0 + (offset register r1 << 2)

 the added address is used for a memory access

 base register r0 is updated with the added address

the offset register r1 is never changed

Assembly Programming
(3A) Addressing Modes

17 Young Won Lim
1/27/20

Addressing mode examples (4)

10. Immediage offset post-indexed
LDR r2, [r0] #4 r2 ← M[r0];

r0 ← r0 + 4

11. Register offset post-indexed
LDR r2, [r0], r1 r2 ← M[r0];

r0 ← r0 + r1

12. Register offset post-indexed
LDR r2, [r0], r1, LSL #2 r2 ← M[r0];

r0 ← r0 + (r1 << 2)

Assembly Programming
(3A) Addressing Modes

18 Young Won Lim
1/27/20

10. Immediate Offset Post-index

LDR r2, [r0], #4 r2 ← M[r0]; r0 ← r0 + 4

first accessing memory, then adding operation
base register r0 + immediate offset #4

 the initial base register r0 is used for a memory access

no need the ! suffix, the base register is always updated

have similar applications like pre-index

Assembly Programming
(3A) Addressing Modes

19 Young Won Lim
1/27/20

11. Register Offset Post-index

LDR r2, [r0], r1 r2 ← M[r0]; r0 ← r0 + r1

first accessing memory, then adding operation
base register r0 + offset register r1

 the initial base register r0 is used for a memory access

no need the ! suffix, the base register r0 is always updated

have similar applications like pre-index

Assembly Programming
(3A) Addressing Modes

20 Young Won Lim
1/27/20

12. Scaled Register Offset Post-index

LDR r2, [r0], r1, LSL #2 r2 ← M[r0]; r0 ← r0 + (r1 << 2)

first accessing memory, then adding operation
base register r0 + (offset register r1 << 2)

 the initial base register r0 is used for a memory access

no need the ! suffix, the base register r0 is always updated

the offset register r1 is never changed

have similar applications like pre-index

Assembly Programming
(3A) Addressing Modes

21 Young Won Lim
1/27/20

Register Indirect Addressing

register indirect addressing :
the location of an operand is held in a register.
also called indexed addressing or base addressing.

registers address data
r0 = ABCD EFAB 0123 4560 : ABCD EFAB
r1 = 0123 4560

 M[0123 4560] = ABCD EFAB
 [r1] = r0
 equivalence

r1 holds the address of a memory location
r0 holds the data at that location

www.cs.uregina.ca › pub › class › ARM-addressing › lecture
http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

22 Young Won Lim
1/27/20

Register Indirect Addressing – LDR

To load a value from memory into a register
using register-indirect addressing,
the base register is used

This base register holds the actual memory address

The LDR instruction inspects the base register,

interprets its value as the memory address,
fetches the value stored at that address location,
and then loads it into a destination register.

LDR r0, [r1]
; r0 receives the value held at the memory address pointed to by r1

 ; r0 is the destination register, r1 is the base register

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

23 Young Won Lim
1/27/20

Register Indirect Addressing – STR

To store a value to memory from a register
using register-indirect addressing,
a base register is again employed
to hold the actual memory address.

The STR instruction inspects the base register,
interprets its value as a memory address location,
and places the value held in the source register
into the memory location.

STR r0, [r1]
; the memory location pointed to by r1 receives the value held in r0

 ; r0 is the source register, r1 is the base register

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

24 Young Won Lim
1/27/20

Loading a full 32-bit address

register-indirect addressing is simple
but has the following problem

How can a 32-bit address be loaded
into a register in the first place?

it might seem that a MOV instruction
would resolve this issue.

but all ARM instructions are 32 bits long,
bits are needed for the opcode and the destination register
less than 32 bits are left for an address

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

25 Young Won Lim
1/27/20

Pseudo-instruction ADR

The ARM uses a pseudo-instruction,
that does not have its own binary encoded instruction.

Instead the assembler translates this pseudo-instruction
into one or more real instructions.

ADR is one of the pseudo-instruction,
which loads an address into a destination register.

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

26 Young Won Lim
1/27/20

PC-Relative Addressing Example

Copycode ADR r1, SRC ; the value of r1 points to the SRC location
 ADR r2, DST ; the value of r2 points to the DST location
 LDR r0, [r1] ; load value at r1 address into r0 (SRC)
 STR r0, [r2] ; store value in r0 into r2 address (DST)
 .
SRC . ; source of data
 .
DST . ; destination for the data

ADR r1, SRC will be converted into ADD r1, pc, #offset_src
ADR r2, DST will be converted into ADD r2, pc, #offset_dst

PC-relative offset = Desired Address – (Current ADR Inst Address + 8)

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

27 Young Won Lim
1/27/20

PC-relative offset

0000 4000: ADR r1, SRC ; ADD r1, pc, #0x78
0000 4004: ADR r2, DST ; ADD r2, pc, #0x80

0000 4080: XXXX XXXX

0000 408c: YYYY YYYY

PC-relative offset = desired address – (Current ADR Inst Address + 8)
= desired address – (Current value of PC)

78 = 4080 – (4000+8) (4000+8) + 78 = 4080
80 = 408c – (4004+8) (4004+8) + 80 = 408c

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

28 Young Won Lim
1/27/20

Current value of PC

The trick with the ADR instruction relies on the fact that
the current value of the PC (r15) (8-byte advance)
will normally be close to the intended memory address location.

Thus an ADR instruction is translated
into one or more instructions
that can add a constant value to or
subtract a constant value
from the current value of the PC
and place the result in the destination register
specified by the original ADR instruction.

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

29 Young Won Lim
1/27/20

PC-Relative Addressing and Offset

PC-relative addressing :
The constant value is known as the PC-relative offset.
It can be calculated by the formula below:

PC-relative offset = desired address – (ADR Inst Address + 8)

The +8 in the formula is a consequence of
how the ARM processes instructions
using "pipeline" techniques

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture4/lecture4-2-3.html

Assembly Programming
(3A) Addressing Modes

30 Young Won Lim
1/27/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

