Laurent Series and z-Transform - Geometric Series Causality B

20180706

Copyright (c) 2016-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

2 formulas of z
(1) $\frac{3}{2} \frac{-1}{(z-0.5)(z-2)}=\left(\frac{1}{z-0.5}-\frac{1}{z-2}\right)$
z^{-1}
(2) $\frac{3}{2} \frac{-z^{2}}{(z-2)(z-0.5)}=\left(\frac{0.5 z}{(z-0.5)}-\frac{2 z}{(z-2)}\right)$

$$
\begin{aligned}
& \frac{3}{2} \frac{-1}{(z-0.5)(z-2)} \quad z^{-1} \quad \frac{3}{2} \frac{-z^{2}}{(z-2)(z-0.5)} \\
& \frac{3}{2} \frac{-1}{(z-0.5)(z-2)}=\frac{3}{2} \frac{2}{3}\left(\frac{1}{z-0.5}-\frac{1}{z-2}\right) \\
& =\left(\frac{1}{z-0.5}-\frac{1}{z-2}\right) \\
& \frac{3}{2} \frac{-1}{\left(z^{-1}-0.5\right)\left(z^{-1}-2\right)}=\frac{3}{2} \frac{2}{3}\left(\frac{1}{z^{-1}-0.5}-\frac{1}{z^{-1}-2}\right) \\
& =\left(\frac{2}{2 z^{-1}-1}-\frac{0.5}{0.5 z^{-1}-1}\right) \\
& =\left(\frac{2 z}{2-z}-\frac{0.5 z}{0.5-z}\right) \\
& =\left(\frac{-2 z}{z-2}+\frac{0.5 z}{z-0.5}\right) \\
& =z\left(\frac{-2}{z-2}+\frac{0.5}{z-0.5}\right) \\
& =z\left(\frac{-\frac{3}{2} z}{(z-2)(z-0.5)}\right) \\
& =\frac{3}{2} \frac{-z^{2}}{(z-2)(z-0.5)} \\
& \frac{3}{2} \frac{-z^{2}}{(z-2)(z-0.5)}=\frac{3}{2} \frac{2}{3}\left(\frac{0.5 z}{(z-0.5)}-\frac{2 z}{(z-2)}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
f(z) & f\left(z^{-1}\right) \\
g\left(z^{-1}\right) & g(z)
\end{array} \quad \begin{array}{ll}
X\left(z^{-1}\right) & X(Z) \\
Y(z) & Y\left(z^{-1}\right) \\
\hline
\end{array}
$$

Laurent Series $a_{n} \leftrightarrow f(z) \quad b_{n} \leftrightarrow g(z)$

z - Transform $\quad X(z) \leftrightarrow x_{n} \quad Y(z) \leftrightarrow y_{n}$

$$
\begin{array}{ll}
f(z) & f\left(z^{-1}\right) \\
f(z) & f\left(z^{-1}\right)
\end{array} \quad \begin{array}{ll}
x\left(z^{-1}\right) & x(z) \\
x\left(z^{-1}\right) & x(z) \\
\hline
\end{array}
$$

Laurent Series $a_{n} \leftrightarrow f(z)$

z - Transform $\quad X(z) \leftrightarrow x_{n}$

$-\frac{p^{-1}}{1-p^{-1} z}$	$-\frac{p^{-1}}{1-p^{-1} z^{-1}}$
$\frac{z^{-1}}{1-p z^{-1}}$	$\frac{z}{1-p z}$

$$
\begin{array}{|cc|}
\hline-\frac{p^{-1}}{1-p^{-1} z} & -\frac{p^{-1}}{1-p^{-1} z^{-1}} \\
\frac{z^{-1}}{1-p z^{-1}} & \frac{z}{1-p z} \\
\hline
\end{array}
$$

Laurent Series $a_{n} \leftrightarrow f(z)$

z - Transform $\quad X(z) \leftrightarrow x_{n}$

(1) focusing functions $\begin{array}{ll}f(z) & g(z) \\ f(z) & g(z)\end{array} \begin{array}{ll}Y(z) & X(z) \\ Y(z) & X(z)\end{array}$

Laurent Series $a_{n} \leftrightarrow f(z)$

z - Transform $\quad X(z) \leftrightarrow x_{n}$

(2) focusing ROC's
$|z|<p \quad|z|>p^{-1}$
$|z|<p \quad|z|>p^{-1}$
$|z|>p \quad|z|<p^{-1}$
$|z|>p \quad|z|<p^{-1}$
Laurent Series $a_{n} \leftrightarrow f(z)$

z - Transform $\quad X(z) \leftrightarrow x_{n}$

(3) focusing ranges

$$
\begin{array}{ll}
n \geqslant 0 & n<1 \\
n<0 & n \geqslant 1
\end{array}
$$

$$
n<1 \quad n \geqslant 0
$$

$$
n \geqslant 1 \quad n<0
$$

Laurent Series $a_{n} \leftrightarrow f(z)$

z - Transform $\quad X(z) \leftrightarrow x_{n}$

(4) focusing sequences

$-\left(p_{1}^{1}, p^{-2}, p_{1}^{-1}, \cdots\right)$
$\left(p_{1}^{0}, p_{1}^{1}, p_{2}^{2}, \cdots\right)$

$$
-\left(p_{1}^{1}, p_{1}^{2}, p_{1}^{-1} \cdots\right)
$$

Laurent Series $a_{n} \leftrightarrow f(z)$

$n \geqslant 0 \quad$ causal	$n<1 \quad$ anti-causal
$-\left(p^{-1}, p^{-2}, p^{-3}, \ldots\right)$	
$n=0,1,2,3, \ldots$	
$n=-1,-2,-3, \ldots$	
$\left(p^{0}, p^{1}, p^{2}, \ldots\right)$	
$n<0$ anti-causal	$n=0,-1,-2,-3, \ldots$
$n=1,2,3, \ldots$	

z - Transform $\quad X(z) \leftrightarrow x_{n}$

a_{n}, b_{n} Laurent Series graphs of $f(z), g(z)$
causal f(z)

anti-causal $f\left(z^{-1}\right)$

causal $g(z)$

x_{n}, y_{n} graphs of z-transform $X(z), Y(z)$
anti-causal $X\left(Z^{-1}\right)$

causal X(z)

causal Y(z)

anti-causal $Y\left(Z^{-1}\right)$

a_{n}, x_{n} graphs of $f(z), x(z)$
causal f(z)

anti-causal $f\left(z^{-1}\right)$

anti-causal $X\left(Z^{-1}\right)$

causal X(z)

b_{n}, y_{n} graphs of $g(z), Y(z)$
anti-causal $g\left(z^{-1}\right)$

causal g(z)

causal $Y(z)$

anti-causal $Y\left(Z^{-1}\right)$

$f(z)$

$$
\text { causal } f(z)(|z|<p)
$$

anti-causal $f(z)(|z|>p)$

$$
f(t) \leftrightarrow a_{n}(n \geqslant 0)
$$

$$
g\left(z^{-1}\right) \leftrightarrow b-n \quad(n<0)
$$

$n=0+1,+2,+3, \ldots$
anti-causal
$n=-1,-2,-3, \ldots$
$-\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)$ $\left(p^{0}, p^{1}, p^{2}, \cdots\right)$

$$
\begin{array}{l|l}
b_{-n}=-a_{n} & p=2 \\
& p-n=\left(\frac{1}{2}\right)^{n}
\end{array}
$$

$$
p=\left(\frac{1}{2}\right)
$$

$$
p^{-n}=2^{n}
$$

anti-causal $g(z)\left(|z|>p^{-1}\right)$
causal $g(z)\left(|z|<p^{-1}\right)$

$$
f\left(z^{-1}\right) \leftrightarrow a_{-n} \quad(n<1)
$$

$$
g(z) \leftrightarrow b_{n} \quad(n \geqslant 1)
$$

anti-causal
$n=0,-1,-2,-3, \ldots$

$$
-\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)
$$

causal

$$
\begin{array}{r}
n=+1,+2,+3, \ldots \\
\quad\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{\mathbf{1}}, \boldsymbol{p}^{\mathbf{2}}, \cdots\right)
\end{array}
$$

$f(z)(\|z\|<p)$	$a_{n}(n \geqslant 0)$	$-\left(p^{-1}, p^{-2}, p^{-2}, \cdots\right)$	causal $n=0+1,+2,+3, \ldots$
$f(z)(\|z\|>p)$	$-a_{n}(n<0)$	$\left(p^{0}, p^{1}, p^{2}, \cdots\right)$	

$$
\begin{array}{ll}
p=2 & p=\left(\frac{1}{2}\right) \\
p^{-n}=\left(\frac{1}{2}\right)^{n} & p-n=2^{n}
\end{array}
$$

$$
\begin{array}{rrrr}
g(z)\left(|z|<p^{-1}\right) & b_{n}(n \geqslant 1) & -\left(p^{0}, p^{1}, p^{2}, \cdots\right) & \text { causal } \\
g(z)\left(|z|>p^{-1}\right) & -b_{n}(n<1) & \left(p^{-1}, p^{-2}, p^{-3}, \cdots\right) & n=+1,+2,+3, \ldots
\end{array}
$$

$$
\begin{array}{l|l}
p=2 & p=\left(\frac{1}{2}\right) \\
p^{n}=2^{n} & p^{n}=\left(\frac{1}{2}\right)^{n}
\end{array}
$$

$X(z)$
anti-causal $Y(z)(|z|<p)$
causal $Y(z)(|z|>p)$

$$
X\left(z^{-1}\right) \leftrightarrow x-n \quad(n<1)
$$

$$
Y(z) \leftrightarrow y_{n} \quad(n \geqslant 0)
$$

$$
\begin{array}{lr}
\text { causal } X(z)\left(|z|<p^{-1}\right) & \text { anti-causal } X(z)\left(|z|>p^{-1}\right) \\
X(z) \leftrightarrow x_{n}(n \geqslant 1) & Y\left(z^{-1}\right) \leftrightarrow-y_{n}(n<1)
\end{array}
$$

causal

$$
\begin{aligned}
& n=0+1,+2,+3, \ldots \\
& -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)
\end{aligned}
$$

x_{n}

$$
p=\left(\frac{1}{2}\right)
$$

$$
\begin{aligned}
& p=2 \\
& p^{-n}=\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

$$
\begin{array}{l|l}
y_{-n}=-x_{n} & p=2 \\
p^{-n}=\left(\frac{1}{2}\right)^{n}
\end{array}
$$

anti-causal

$$
\begin{aligned}
& n=-1,-2,-3, \ldots \\
& \left(p^{0}, p^{1}, p^{2}, \cdots\right)
\end{aligned}
$$

$$
p^{-n}=2^{n}
$$

$Y(z)$	$\left(\|z\|<p^{-1}\right)$	$-y_{n}$	$(n<1)$	$-\left(p^{-1}, p^{-2}, p^{-1}, \cdots\right)$	anti-causal
$Y(z)$	$\left(\|z\|>p^{-1}\right)$	y_{n}	$(n \geqslant 1)$	$\left(p^{0}, p^{1}, p^{2}, \cdots\right)$	causal
$n=1,-2,-3, \ldots$					

$$
\begin{aligned}
& p=2 \\
& p^{n}=2^{n}
\end{aligned}
$$

$$
\begin{aligned}
& p=\left(\frac{1}{2}\right) \\
& p^{n}=\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

$x(z)$	$(\|z\|>p)$	$x_{n}(n \geqslant 0)$	$-\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)$	causal	$n=0) 1,2,3, \ldots$
$X(z)$	$(\|z\|<p)$	$-x_{n}(n<0)$	$\left(p^{0}, p^{1}, p^{2}, \cdots\right)$	anti-causal	$n=-1,-2,-3, \ldots$

$$
\begin{aligned}
& p=2 \\
& P^{-n}=\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& p=\left(\frac{1}{2}\right) \\
& p^{-n}=2^{n}
\end{aligned}
$$

$$
f(z) \leftrightarrow a_{n}(n \geqslant 0)
$$

$f\left(z^{-1}\right) \leftrightarrow a_{-n} \quad(n<1)$

$$
\begin{array}{rlrl}
\text { causal } & n=(0)+1,+2,+3, \ldots . & \text { anti-causal } \quad n=0-1,-2,-3, \ldots \\
& -\left(p^{-1}, p^{-2}, p^{-2}, \cdots\right) & & -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)
\end{array}
$$

$f(z)$ anti-cousal $f(z)(|z|>p)$
causal $g(z)\left(|z|<p^{-1}\right)$

$$
g\left(z^{-1}\right) \leftrightarrow b-n \quad(n<0)
$$

$$
g(z) \leftrightarrow b_{n}(n \geqslant 1)
$$

$$
\begin{aligned}
& \begin{array}{cc}
p^{0} z^{1}+p^{1} z^{2}+p^{2} z^{3}+\cdots=\sum_{n=1}^{\infty}(p)^{n-1} z^{n} & (n \geqslant 1) \\
n=1,2,3, \cdots & p^{n-1} z^{n}
\end{array} \begin{array}{c}
\frac{z}{1-p z} \begin{array}{c}
(p)^{n-1} \\
\text { causal } f(z)
\end{array} b_{n} \\
|z|<p^{-1} \quad n \geqslant 1
\end{array}
\end{aligned}
$$

anti-causal

$$
\begin{aligned}
& n=-1,-2,-3, \ldots \\
& \quad\left(p^{0}, p^{1}, p^{2}, \cdots\right)
\end{aligned}
$$

$$
\begin{array}{r}
n=+1,+2,+3, \ldots \\
\quad\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{\mathbf{1}}, \boldsymbol{p}^{\mathbf{2}}, \cdots\right)
\end{array}
$$

$$
\begin{aligned}
& |z|<p \\
& |z|>p^{-1}
\end{aligned} \quad \begin{aligned}
& |z|>p \\
& |z|<p^{-1} \\
& \hline
\end{aligned}
$$

inversed ROC's
anti-causal causal
$g(z)\left(|z|>p^{-1}\right)$
$f(z) \quad(|z|<p)$
$a_{-n}(n<1) \quad a_{n} \quad(n \geqslant 0)$
$p=2 \quad p=2$
$p^{n}=2^{n} \quad p^{-n}=\left(\frac{1}{2}\right)^{n}$
anti-causal
$f(z)(|z|>p)$ causal
$g(z) \quad\left(|z|<p^{-1}\right)$
b-n $(n<0)$
$b_{n}(n \geqslant 1)$

$$
\begin{aligned}
& p=2 \\
& p^{-n}=\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

$$
p=2
$$

anti-causal
$g(z)\left(|z|>p^{-1}\right)$
$f(z) \quad(|z|<p)$
$a_{-n}(n<1)$

$p=\left(\frac{1}{2}\right)$	$p=\left(\frac{1}{2}\right)$
$p^{n}=\left(\frac{1}{2}\right)^{n}$	$p^{-n}=2^{n}$

anti-causal
$f(z) \quad(|z|>p)$
$g(z) \quad\left(|z|<p^{-1}\right)$
b-n $\quad(n<0)$
$b_{n}(n \geqslant 1)$

$$
\begin{array}{l|l}
p=\left(\frac{1}{2}\right) & p=\left(\frac{1}{2}\right) \\
p^{-n}=2^{n} & p^{n}=\left(\frac{1}{2}\right)^{n}
\end{array}
$$

$$
\begin{array}{ll}
x_{n} & a_{-n} \\
y_{n} & b_{-n}
\end{array}
$$

causal
anti-causal

$$
\begin{array}{lrl}
n \geqslant 0 & -\left(p^{-1}, p^{-2}, p^{-1}, \cdots\right) & n<1 \\
n \geqslant 1 & \left(p^{-2}, p^{-1}, p^{-1}, \cdots\right) & n<0
\end{array}
$$

anti-causal
causal

$$
\begin{array}{lrl}
n<1 & -\left(p^{-1}, p^{-2}, p^{-2}, \cdots\right) & n \geqslant 0 \\
n<0 & \left(p^{-2}, p^{-2}, p^{-4}, \cdots\right) & n \geqslant 1
\end{array}
$$

anti -causal $Y(z)(|z|<p)$
causal $X(z)\left(|z|<p^{-1}\right)$

$$
X\left(z^{-1}\right) \leftrightarrow x-n(n<1) \quad X(z) \leftrightarrow x_{n}(n \geqslant 1)
$$

$$
\begin{array}{ccc}
n=0,1,2, \cdots & -p^{-n-1} z^{-n} & |z|>p^{-1} \quad n \geqslant 0 \\
-\left(p^{-1}+p^{-2} z^{-1}+p^{-3} z^{-2}+\cdots\right)=\sum_{n=0}^{\infty}-\left(p^{-1}\right)^{n+1} z^{-n} & (n \geqslant 0)
\end{array} \quad \begin{gathered}
-\frac{p^{-1}}{1-p^{-1} z^{-1}}\left[\begin{array}{l}
\text { causal } \times(z) \\
-\left(p^{-1}\right)^{n+1}
\end{array}\right] x_{n}
\end{gathered}
$$

anti-causal
$n=0,-1,-2,-3, \ldots$

$$
-\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)
$$

causal

$$
\begin{aligned}
& n=0+1,+2,+3, \ldots \\
& -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right)
\end{aligned}
$$

$$
\begin{array}{l|l}
\hline x_{n} & p=2 \\
& p-n=\left(\frac{1}{2}\right)^{n}
\end{array}
$$

causal $Y(z)(|z|>p)$
$Y(\varepsilon) \leftrightarrow y_{n}(n \geqslant 0)$
anti-causal $X(z)\left(|z|>p^{-1}\right)$
$Y\left(\varepsilon^{-1}\right) \leftrightarrow-y_{n} \quad(n<1)$

$$
\begin{array}{ccc|}
p^{0} z^{1}+p^{1} z^{2}+p^{2} z^{3}+\cdots=\sum_{n=-1}^{-\infty}\left(p^{-1}\right)^{n+1} z^{-n} & (n<0) & \frac{z}{1-p z} \left\lvert\, \begin{array}{c}
\frac{(p)^{-n-1}}{\text { anti-causal } X(z)}
\end{array} y_{-n}\right. \\
n=-1,-2,-3, \cdots \quad p^{-n-1} z^{-n} & |z|<p^{-1} & n<0
\end{array}
$$

causal

$$
\begin{array}{r}
n=+1,+2,+3, \ldots \\
\left(p^{0}, p^{1}, p^{2}, \cdots\right)
\end{array}
$$

anti-causal
$n=-1,-2,-3, \ldots$

$$
\left(p^{0}, p^{1}, p^{2}, \cdots\right)
$$

$Y(z) \quad\left(|z|<p^{-1}\right) \quad X(z) \quad(|z|>p)$
$-y_{n} \quad(n<1) \quad x_{n} \quad(n \geqslant 0)$
$p=2 \quad p=2$
$p^{n}=2^{n} \quad p^{-n}=\left(\frac{1}{2}\right)^{n}$
$Y(z) \quad\left(|z|<p^{-1}\right)$
$X(z) \quad(|z|>p)$
$-y_{n}$

$$
\begin{array}{l|l}
p=\left(\frac{1}{2}\right) & p=\left(\frac{1}{2}\right) \\
p^{n}=\left(\frac{1}{2}\right)^{n} & p^{-n}=2^{n}
\end{array}
$$

$p=\left(\frac{1}{2}\right)$	p
$p^{n}=\left(\frac{1}{2}\right)^{n}$	$p-n=2^{n}$

$X(z) \quad(|z|<p)$
$Y(z) \quad\left(|z|>p^{-1}\right)$
$-x_{n} \quad(n<0)$
$y_{n} \quad(n \geqslant 1)$

$$
\begin{array}{ll}
p=2 & p=2 \\
p^{-n}=\left(\frac{1}{2}\right)^{n} & p^{n}=2^{n}
\end{array}
$$

$x(z) \quad(|z|<p)$
$Y(z) \quad\left(|z|>p^{-1}\right)$
$-x_{n} \quad(n<0) \quad y_{n} \quad(n \geqslant 1)$

$$
\begin{array}{l|l}
p=\left(\frac{1}{2}\right) & p=\left(\frac{1}{2}\right) \\
p^{-n}=2^{n} & p^{n}=\left(\frac{1}{2}\right)^{n}
\end{array}
$$

Getting causal sequence

Getting causal sequence wo memorizing

$$
\begin{aligned}
& {\left[-\frac{p^{-1}}{1-p^{-1} z}\right.} \\
& \| \\
& \mathbf{I}(z) \leftrightarrow-\left(p^{-1}\right)^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{z^{-1}}{1-p z^{-1}} \\
& \| \\
& Y(Z) \leftrightarrow(p)^{n-1}
\end{aligned}
$$

$$
\frac{-\frac{p^{-1}}{1-p^{-1} z^{-1}}}{}
$$

$$
x(z) \leftrightarrow-\left(p^{-1}\right)^{n+1}
$$

getting anti-causal sequence

(1) $z \leftarrow z^{-1}$
(2) $a_{n} \leftarrow a_{-n}$

z^{-1}

$$
\begin{aligned}
& g(z) \leftrightarrow(p)^{n-1} \\
& Y\left(z^{-1}\right) \leftrightarrow(p)^{-n-1}
\end{aligned}
$$

getting anti-causal sequence who memorizing

$$
\begin{aligned}
& \begin{array}{lll}
f\left(z^{-1}\right)=-\frac{p^{-1}}{1-p^{-1}} & z^{-1} & -\frac{p^{-1}}{1-p^{-1} z}
\end{array}=f(z) \\
& g\left(z^{-1}\right)=\begin{array}{l}
\frac{z^{-1}}{1-p z^{-1}}
\end{array} z^{-1} \quad \frac{z}{\frac{z}{1-p z}}=g(z) \\
& b-n=(p)^{-n-1} \quad-n \quad(p)^{n-1}=b_{n}
\end{aligned}
$$

$$
\begin{array}{ccc}
Y\left(z^{-1}\right)=\frac{Z}{1-p z} & Z^{-1} & \sqrt{\frac{z^{-1}}{1-p z^{-1}}}=Y(z) \\
y-n=(p)^{-1} & -n & (p)^{n-1}=y_{n} \\
y\left(z^{-1}\right)=-\frac{p^{-1}}{1-p^{+1}} & z^{-1} & -\frac{p^{-1}}{1-p^{-1}}=X(z) \\
& & -n \\
x-n=-\left(p^{-1}\right)^{-n+1} & -\left(p^{-1}\right)^{n+1}=x_{n}
\end{array}
$$

getting anti-causal sequence

Laurent Series

z-Transform

$f\left(z^{-1}\right) \quad g\left(z^{-1}\right)$
(1) $z^{-1} \rightarrow z \quad f(z), g(z)$
(2) $f(z) \leftrightarrow a_{n} \quad g(z) \leftrightarrow b_{n}$
(3) $n \rightarrow-n \quad a-n, b-n$
$X\left(z^{-1}\right) \quad Y\left(z^{-1}\right)$
(1) $z^{-1} \rightarrow z$
$X(z), Y(z)$
(2) $x(z) \leftrightarrow x_{n}$

$$
Y(z) \leftrightarrow y_{n}
$$

(3) $n \rightarrow-n \quad x-n, x-n$

$$
\begin{array}{ll}
f\left(z^{-1}\right)=-\frac{p^{-1}}{1-p^{-1} z^{-1}} & g\left(z^{-1}\right)=\frac{z^{-1}}{1-p z^{-1}} \\
f(z)=-\frac{p^{-1}}{1-p^{-1}} & g(z)=\frac{z}{1-p z} \\
Y\left(z^{-1}\right)=\frac{z}{1-p z} & X\left(z^{-1}\right)=-\frac{p^{-1}}{1-p^{-1}} \quad \text { anti-causal } \\
Y(z)=\frac{z^{-1}}{1-p z^{-1}} & X(z)=-\frac{p^{-1}}{1-p^{-1} z^{-1}}
\end{array}
$$

$f\left(z^{-1}\right) \quad g\left(z^{-1}\right)$
(1) $z^{-1} \rightarrow z \quad f(z), g(z)$
(2) $f(z) \leftrightarrow a_{n} \quad g(z) \leftrightarrow b_{n}$
(3) $n \rightarrow-n \quad a-n, b-n$

$$
f\left(z^{-1}\right)=-\frac{p^{-1}}{1-p^{-1} z^{-1}} \quad g\left(z^{-1}\right)=\frac{z^{-1}}{1-p z^{-1}}
$$

(1) $f(z)=-\frac{p^{-1}}{1-p^{-1} z} \quad g(z)=\frac{z}{1-p z}$
(2) $a_{n}=-\left(p^{-1}\right)^{n+1} \quad b_{n}=(p)^{n-1}$
(3) $a_{-n}=-\left(p^{-1}\right)^{-n+1} \quad b-n=(p)^{-n-1}$
$X\left(z^{-1}\right) \quad Y\left(z^{-1}\right)$
(1) $Z^{-1} \rightarrow z \quad X(z), Y(z)$
(2) $X(z) \leftrightarrow x_{n} \quad Y(z) \leftrightarrow y_{n}$
(3) $n \rightarrow-n$
$x-n, x-n$

$$
Y\left(z^{-1}\right)=\frac{z}{1-p z} \quad X\left(z^{-1}\right)=\frac{p^{-1}}{1-p^{-1} z}
$$

(1) $Y(z)=\frac{z^{-1}}{1-P z^{-1}} \quad X(z)=\frac{p^{-1}}{1-P^{-1} z^{-1}}$
(2) $y_{n}=(p)^{n-1} \quad x_{n}=-\left(p^{-1}\right)^{n+1}$
(3) $y_{-n}=-\left(p^{-1}\right)^{-n+1} \quad x_{-n}=(p)^{-n-1}$
(1) $\frac{-1}{(z-1)(z-2)}$
(2) $\frac{-0.5 z^{2}}{(z-1)(z-0.5)}$

$$
\begin{array}{ll}
-\frac{1}{1-z}+\frac{0.5}{1-0.5 z} & +\frac{z}{1-z}-\frac{z}{1-2 z} \\
f(z) \quad|z|<1 \text { causal } & f(z) \quad|z|<0.5 \text { causal } \\
x(z) \quad|z|<1 \text { anti-causal } & x(z) \quad|z|<0.5 \text { anti-causal }
\end{array}
$$

$$
\begin{aligned}
+\frac{z^{-1}}{1-z^{-1}}-\frac{z^{-1}}{1-2 z^{-1}} & -\frac{1}{1-z^{-1}}+\frac{1}{1-0.5 z^{-1}} \\
f(z) \quad|z|>1 \quad \text { anti-causal } & f(z) \quad|z|>2 \text { anti-causal } \\
X(z) \quad|z|>1 \quad \text { cansal } & X(z) \quad|z|>2 \text { causal }
\end{aligned}
$$

$$
\begin{array}{rr}
-\frac{1}{1-z}+\frac{0.5}{1-0.5 z} & +\frac{z}{1-z}-\frac{z}{1-2 z} \\
f(z) \quad|z|<1 & f(z) \quad|z|<0.5 \\
& +\frac{1}{1-z}-\frac{1}{1-2 z} \\
& g(z) \quad|z|<0.5
\end{array}
$$

$$
\begin{array}{cc}
+\frac{z^{-1}}{1-z^{-1}}-\frac{z^{-1}}{1-2 z^{-1}} & -\frac{1}{1-z^{-1}}+\frac{1}{1-0.5 z^{-1}} \\
X(z) \quad|z|>1 & X(z) \quad|z|>2
\end{array}
$$

$$
\cdot z^{-1} n-1
$$

$$
\begin{gathered}
+\frac{1}{1-z^{-1}}-\frac{1}{1-2 z^{-1}} \\
V(z) \quad|z|>1
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{1}{1-z}+\frac{0.5}{1-0.5 z} \\
& x(z) \quad|z|<1 \\
& z^{-1}-n \\
& X(z) \quad|z|<0.5 \\
& z^{-1}-n \\
& +\frac{z^{-1}}{1-z^{-1}}-\frac{z^{-1}}{1-2 z^{-1}} \\
& V(z) \quad|z|>1 \\
& \cdot z^{-1} n-1 \\
& +\frac{1}{1-z^{-}}-\frac{1}{1-2 z^{-1}} \\
& W(z) \quad|z|>1 \\
& \begin{array}{cc}
+\frac{z^{-1}}{1-z^{-1}}-\frac{z^{-1}}{1-2 z^{-1}} & -\frac{1}{1-z^{-1}}+\frac{1}{1-0.5 z^{-1}} \\
f(z) \quad|z|>1 & f(z) \quad|z|>2
\end{array} \\
& z^{-1} \quad-n \\
& z^{-1}-n \\
& +\frac{z}{1-z}-\frac{z}{1-2 z} \\
& g(z) \quad|z|<0.5 \\
& g(z) \quad|z|<1 \\
& \text { - z } n-1 \\
& +\frac{1}{1-z}-\frac{1}{1-2 z} \\
& h(z) \quad|z|<0.5
\end{aligned}
$$

$$
\begin{aligned}
& -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right) \\
& n=0,1,2, \cdots \\
& \text { causal } n \geqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right) \\
& n=0,-1,-2, \cdots
\end{aligned}
$$

anti-causal $n<1$

$$
\begin{aligned}
& \left(p^{0}, p_{1}, p^{2}, \cdots\right) \\
& n=1,2,3, \cdots \\
& \text { anti-causal } n<0 \\
& x_{n} \\
& y_{n}
\end{aligned}
$$

$$
\left(p^{0}, p_{1}, p^{2}, \cdots\right)
$$

$$
n=-1,-2,-3, \ldots
$$

$$
\text { causal } n \geqslant 1
$$

causal anti-causal

$$
\begin{array}{lll}
n \geqslant 0 & -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right) & n<1 \\
n \geqslant 1 & \left(p^{-2}, p^{-3}, p^{-4}, \cdots\right) & n<0
\end{array}
$$

anti-causal
causal

$$
\begin{array}{lll}
n<1 & -\left(p^{-1}, p^{-2}, p^{-3}, \cdots\right) & n \geqslant 0 \\
n<0 & \left(p^{-2}, p^{-3}, p^{-4}, \cdots\right) & n \geqslant 1
\end{array}
$$

