Timer / Counter Architecture

Young Won Lim 8/1/22 Copyright (c) 2022 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture, D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

NXP LPC214x Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Timer / Counter

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Registers in each timer

MR0,1,2,3	: Match Registers
CR0,1,2,3	: Capture Register
MCR	: Match Control Register
ТС	: Timer Counter
TCR	: Timer Control Register
PR	: Prescale Register
PC	: Prescale Counter
TOIR	: Interrupt Register

MR0,1,2,3	: Match Registers
CR0,1,2,3	: Capture Register
MCR	: Match Control Register
ТС	: Timer Counter
TCR	: Timer Control Register
PR	: Prescale Register
PC	: Prescale Counter
T <mark>1</mark> IR	: Interrupt Register

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Interrupt Register (IR)

The **IR** can be <u>read</u> to identify which of 8 possible interrupt sources are pending.

The **IR** can be <u>written</u> to <u>clear</u> interrupts.

TIMER/ COUNTER0	T0IR
TIMER/ COUNTER1	T1IR

The Interrupt Register consists of four bits for the match interrupts and four bits for the capture interrupts.

If an interrupt is <u>generated</u> then the corresponding <u>bit</u> in the **IR** will be <u>high</u>. Otherwise, the bit will be low.

<u>Writing</u> a logic <u>one</u> to the corresponding IR bit will <u>reset</u> the <u>interrupt</u>. <u>Writing</u> a <u>zero</u> has no effect

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Bit 0	: MR0 Interrupt	flag for match channel 0
Bit 1	: MR1 Interrupt	flag for match channel 1
Bit 2	: MR2 Interrupt	flag for match channel 2
Bit 3	: MR3 Interrupt	flag for match channel 3
Bit 4	: CR0 Interrupt	flag for capture channel 0 event
Bit 5	: CR1 Interrupt	flag for capture channel 1 event
Bit 6	: CR2 Interrupt	flag for capture channel 2 event
Bit 7	: CR3 Interrupt	flag for capture channel 3 event

A high bit signifies the interrupt is generated

Match Registers : MR0 ~ MR3

The Match register values are <u>continuously compared</u> to the Timer Counter value.

When the two values are <u>equal</u>, <u>actions</u> can be <u>triggered</u> <u>automatically</u>.

MR0 (Match Register 0)

can be <u>enabled</u> through the MCR to <u>reset</u> the TC, <u>stop</u> both the TC and PC, and/or <u>generate</u> an <u>interrupt</u> whenver MR0 matches the TC

Match Control Register (MCR)

"n" represents the Timer number, 0 or 1.	MCR[0]:	MR0I
	MCR[1]:	MR0R
Interrupt on MR0: MR0I = 1	MCR[2]:	MR0S
an interrupt is <u>generated</u>	MCR[3]:	MR1I
when MR0 <u>matches</u> the value in the TC	MCR[4]:	MR1R
	MCR[5]:	MR1S
Reset on MR0: MR0R = 1	MCR[6]:	MR2I
the TC will be <u>reset</u> if MR0 <i>matches</i> it.	MCR[7]:	MR2R
	MCR[8]:	MR2S
Stop on MR0: MR0S = 1	MCR[9]:	MR3I
the TC and PC will be <u>stopped</u> and	MCR[10]:	MR3R
TCR[0] will be set to 0 if MR0 matches the TC	MCR[11]:	MR3S

TC, PR, PC

TC : Timer Counter.

The 32-bit **TC** is incremented every **PR+1** cycles of **PCLK**.

The TC is controlled through the TCR

PR : Prescale Register.

The Prescale Counter is equal to this value, the next clock <u>increments</u> the **TC** and <u>clears</u> the **PC**

PC : Prescale Counter.

The 32-bit **PC** is a counter which is <u>incremented</u> to the value stored in **PR**.

When the value in **PR** is <u>reached</u>, the **TC** is <u>incremented</u> and the **PC** is <u>cleared</u>.

The **PC** is <u>observable</u> and <u>controllable</u> through the bus interface

Timer Control Register (TCR)

TCR[0] : Counter Enable

When <u>one</u>, the Timer Counter (**TC**) and Prescale Counter (**PC**) are <u>enabled</u> for counting. When <u>zero</u>, the counters are <u>disabled</u>.

TCR[1] : Counter Reset

When <u>one</u>, the Timer Counter (TC) and Prescale Counter (PC) are are <u>synchronously</u> <u>reset</u> on the next positive edge of PCLK. The counters <u>remain</u> <u>reset</u> until TCR[1] is returned to <u>zero</u>.

TCR[7:2] : Reserved,

user software <u>should not write ones</u> to reserved bits. The value read from a reserved bit is <u>not defined</u>.

Capture Register

Each capture register is associated with a device pin and may be <u>loaded</u> with the **Timer Counter** value when a specified <u>event</u> occurs on that pin.

The settings in the Capture Control Register register determine whether the capture function is <u>enabled</u>, and whether a <u>capture event happens</u> on the <u>rising edge</u> of the associated pin, the <u>falling edge</u>, or on <u>both edges</u>.

TIMER0

٦

Match Capture	MR0, MR1, MR2, MR3 CR0, CR1, CR2, CR3
Match	MR0, MR1, MR2, MR3
Capture	CR0, CR1, CR2, CR3

CR0: Capture Register 0. CR0 is loaded with the value of TC when there is an event on the CAPn.0 CAP0.0 for TIMER0 CAP1.0 for TIMER1, respectively

Capture Control Register (CCR)

The Capture Control Register is used to control

whether one of the four **Capture Registers** is <u>loaded</u> with the value in the **Timer Counter** when the <u>capture event</u> occurs

whether an **interrupt** is **generated** by the capture event.

Setting both the rising and falling bits at the same time is a <u>valid</u> configuration, resulting in a capture event for both edges.

CR0, CR1, CR2, CR3

RE, FE

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

whether one of the four **Canture Regi**

4 capture channels per timer

Up to four 32-bit capture channels per timer,

that can take a snapshot of the timer value when an input signal transitions.

A capture event may also optionally generate an interrupt

Capture Control Register (CCR)

"n" represents the Timer number, 0 or 1.

Capture on CAPn.0 rising edge: CAPORE a sequence of 0 then 1 on CAPn.0 will cause CR0 to be loaded with the contents of TC.

Capture on CAPn.0 falling edge: CAP0FE a sequence of 1 then 0 on CAPn.0 will cause CR0 to be loaded with the contents of TC.

Capture Events

TIMER1

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Four capture channels for each timer

Capture Events

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Capture Control Register (CCR)

"n" represents the Timer number, 0 or 1.

Capture on CAPn.0 rising edge: CAPORE = 1 a sequence of 0 then 1 on CAPn.0 will cause CR0 to be loaded with the contents of TC.

Capture on CAPn.0 falling edge: CAP0FE = 1 a sequence of 1 then 0 on CAPn.0 will cause CR0 to be loaded

with the contents of **TC**

Interrupt on CAPn.0 event: CAP0I = 1 a CR0 load due to a CAPn.0 event will generate an interrupt.

CCR [0]:	CAP0RE
CCR [1]:	CAP0FE
CCR [2]:	CAP0I
CCR [3]:	CAP1RE
CCR [4]:	CAP1FE
CCR [5]:	CAP1I
CCR [6]:	CAP2RE
CCR [7]:	CAP2FE
CCR [8]:	CAP2I
CCR [9]:	CAP3RE
CCR [10]:	CAP3FE
CCR [11]:	CAP3I

Timer / Counter Capture Pins (1)

Capture Signals -

A transition on a capture pin can be configured to load one of the Capture Registers with the value in the Timer Counter and optionally to generate an interrupt.

Capture functionality can be selected from a number of pins. (*physically more than one pin can exist*)

- CAP0.0 (3 pins)
- CAP0.1 (2 pins)
- CAP0.2 (3 pin)
- CAP0.3 (1 pin)
- CAP1.0 (1 pin)
- CAP1.1 (1 pin)
- CAP1.2 (2 pins)
- CAP1.3 (2 pins)

Timer / Counter Capture Pins (2)

When <u>more than one pin</u> is <u>selected</u> for a Capture input on a single TIMER0/1 channel, the pin with the lowest Port number is used.

only one pin is used per channel

If for example pins 30 (P0.6) and 46 (P0.16) are selected for CAP0.2, only pin 30 will be used by TIMER0 to perform CAP0.2 function.

Here is the list of all CAPTURE signals, together with pins on where they can be selected:

- CAP0.0 (3 pins) : P0.2, P0.22 and P0.30
- CAP0.1 (2 pins) : P0.4 and P0.27
- CAP0.2 (3 pin) : P0.6, P0.16 and P0.28
- CAP0.3 (1 pin) : P0.29
- CAP1.0 (1 pin) : P0.10
- CAP1.1 (1 pin) : P0.11
- CAP1.2 (2 pins) : P0.17 and P0.19
- CAP1.3 (2 pins) : P0.18 and P0.21

Timer mode and Counter mode

Timer Mode

PC is incremented on rising PCLK

Counter Mode

TC is incremented on rising, falling, both edges on the CAP input

Timer / Counter Capture Pins

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

CounTer Control Register (CTCR)

The Count Control Register (CTCR) is used	Bits 1:0	Cou	nter / Timer Mode)		
		00	Timer mode,	rising	PCLK	
1) to select between Timer and Counter mode		01	Counter mode,	rising	CAP in	put
		10	Counter mode,	falling	CAP in	put
2) to select the <mark>pin</mark> (Bits 3:2)		11	Counter mode,	both	CAP in	put
and edge(s) (Bits 1:0) for counting						
in Counter mode	Bits 3:2	Cou	nt Input Select			
		00	CAPn.0			
		01	CAPn.1			
		10	CAPn.2			
		11	CAPn.3			
		0		1		
		0		±		

for TIMER0	for TIMER1
CAP <mark>0</mark> .0	CAP1.0
CAP0.1	CAP 1 .1
CAP0.2	CAP1.2
CAP0.3	CAP1.3

CounTer Control Register (CTCR)

When Counter Mode is chosen, (CTCR[1:0] = 01,10,11) the CAP input (selected by the CTCR[3:2]) is sampled on every rising edge of the **PCLK** clock.

After comparing <u>two consecutive samples</u> of this CAP input, one of the following four events is recognized:

rising edge, falling edge, either of edges or no changes in the level of the selected CAP input.

CounTer Control Register (CTCR)

Only if the identified event corresponds to the one selected by bits 1:0 in the **CTCR** register, the **Timer Counter** register will be <u>incremented</u>

- Bits 1:0 Counter / Timer Mode Timer mode, 00 rising PCLK 01 Counter mode, rising CAP input falling CAP input 10 Counter mode, both CAP input 11 Counter mode, Bits 3:2 **Count Input Select**
 - 00 CAPn.0
 - 01 CAPn.1
 - 10 CAPn.2
 - 11 CAPn.3

CTCR – Counter / Timer Mode

Bits	Mode	This field selects which
1:0	Timer /	rising PCLK edges can increment Timer's Prescale Counter (PC),
	Counter	or <u>clear</u> PC and <u>increment</u> Timer Counter (TC).
00	Timer Mode	every rising PCLK edge
01	Counter Mode	TC is incremented on rising edges on the CAP input selected by bits 3:2.
10	Counter Mode	TC is incremented on falling edges on the CAP input selected by bits 3:2.
11	Counter Mode	TC is incremented on both edges on the CAP input selected by bits 3:2

Timer ModePC is incremented on rising PCLKCounter ModeTC is incremented on rising, falling, both edges on the CAP input

- Rising PCLK
- Rising CAPn.0~3
- Falling CAPn.0~3
- Both CAPn.0~3

CTCR – CAP Select

Bits 3:2	Select Counter Input	When bits 1:0 in this register are <u>not</u> 00 (Timer Mode), these bits <u>select</u> which CAP pin is sampled for clocking:
00	CAPn.0	CAP0.0 for TIMER0 and CAP1.0 for TIMER1
01	CAPn.1	CAP0.1 for TIMER0 and CAP1.1 for TIMER1
10	CAPn.2	CAP0.2 for TIMER0 and CAP1.2 for TIMER1
11	CAPn.3	CAP0.3 for TIMER0 and CAP1.3 for TIMER1

Note: If Counter mode is selected for a particular CAPn input in the TnCTCR, the 3 bits for that input in the Capture Control Register (TnCCR) must be programmed as 000.

However, capture and/or interrupt can be selected for the other 3 CAPn inputs in the same timer.

U0IIR

The **UOIIR** provides a status code that denotes the priority and source of a pending interrupt

the interrupts are frozen during an UOIIR access.

if an <u>interrupt</u> occurs during an **UOIIR** <u>access</u>, the <u>interrupt</u> is <u>recorded</u> for the <u>next</u> **UOIIR** <u>access</u>

given the status of UOIIR[3:0], an interrupt handler routine can determine the cause of the interrupt and how to clear the active interrupt.

The **UOIIR** <u>must</u> be <u>read</u> in order to <u>clear</u> the interrupt prior to exiting the ISR

References

- [1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
- [2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
- [3] http://www.valvers.com/open-software/raspberry-pi/
- [4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html