
●

●

FPGA Carry Chain Adder (1A)

 Copyright (c) 2010 -- 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Carry Chain Adder 3 Young Won Lim
10/7/20

FPGA Carry Chain Cell

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

0 1
LUT

x(i)

y(i)

⊕

q(i)

z(i) = q(i) xor p(i)

q(i+1)

⊕
p(i)

si = (ai⊕bi)⊕ci = pi⊕c i
ci+1 = (ai⋅bi)+(ai⊕bi)ci = pi⋅gi+ pi⋅ci = pi⋅ai+ pi⋅ci = pi⋅bi+ pi⋅ci

when p
i
 = 1, then a

i
 = b

i

when g
i
 = 1, then a

i
 = b

i
 = 1

0 1
0 0 1
1 1 0

0 1
0 0 0
1 0 1

g(i)p(i)

If p(i) = 1, then q(i+1) = q(i)
If p(i) = 0, then q(i+1) = y(i)

Carry Chain Adder 4 Young Won Lim
10/7/20

FPGA Carry Chain Cell

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

0 1LUT
x(3)
y(3) ⊕

q(3)
z(3)

q(4)

⊕

p(3)

0 1LUT
x(2)
y(2) ⊕

q(2)
z(2)⊕

p(2)

0 1LUT
x(1)
y(1) ⊕

q(1)
z(1)⊕

p(1)

0 1LUT
x(0)
y(0) ⊕

q(0)
z(0)⊕

p(0)

Carry Chain Adder 5 Young Won Lim
10/7/20

FPGAs generally contain dedicated computation resources
for generating fast adders

The Virtex family programmable arrays include
logic gates (XOR) and multiplexers that along with the
general purpose lookup tables allow one to build effective carry-chain adders

The carry chain is made up of multiplexers
belonging to adjacent configurable blocks

the lookup table is used for implementing the exclusive or function

p(i) = x(i) xor y(i)

https://en.wikipedia.org/wiki/Carry-lookahead_adder

FPGA Carry Chain

Carry Chain Adder 6 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

2 LUT 2 LUT

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cout1, Cout2 : functions of X, Y, Cin

Cout1 = X+Y when Cin=1
Cout0 = X Y when Cin=0

Cout = (X + Y) Cin + X Y Cin

Cout = P’ Cin + G Cin … P’ = relaxed P

1 0

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Chain Adder 7 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cout : functions of X, Y, Cin

Cout(X, Y, 1) = Cout1 = X + Y
Cout(X, Y, 0) = Cout0 = X Y

Cout1 = X + Y when Cin=1
Cout0 = XY when Cin=0

Cout1 = P’ Cin … P’ = relaxed P
Cout0 = G Cin

Cin Cin
X Y Cout1 Cout0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

If Cin, then Cout = (X Y + X Y + X Y)
If Cin, then Cout = X Y

Cin (X + Y) + Cin X Y
Cin (X Y + X Y + X Y) + Cin X Y
Cin (X Y + X Y) + (Cin + Cin) X Y
P Cin + G

Cin (X + Y) + Cin X Y
Cin P’ + Cin G … P’ : relaxed P

1 0

Carry Chain Adder 8 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cout1=1 Cout0=0

Cout1=1 when Cin=1
Cout0=0 when Cin=0

Cout = Cin

Cin

Cout0 Cout1 Cout Name
0 0 0 Kill
0 1 Cin Propagate
1 0 Cin Inverse Propagate
1 1 1 Generate

Cout1=0 Cout0=1

Cout1=0 when Cin=1
Cout0=1 when Cin=0

Cout = Cin

Cin

OR AND

F1 F0

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Chain Adder 9 Young Won Lim
10/7/20

Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cin Cin
X Y Cout1 Cout0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

1 0
Cout1 Cout0 Cout Name

0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Out
X Y Cin
0 0 Cin Cin
0 1 Cin Cin
1 0 Cin Cin
1 1 Cin Cin

Cout1=1 when Cin=1
Cout0=0 when Cin=0
Cout = Cin propage

Cout1=0 when Cin=1
Cout0=1 when Cin=0
Cout = Cin inverse propagate

Carry Chain Adder 10 Young Won Lim
10/7/20

Parity Checker

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

XNOR XOR

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cin Cin
X Y Cout1 Cout0
0 0 1 0 X Y
0 1 0 1 X Y
1 0 0 1 X Y
1 1 1 0 X Y

1 0
Cout1 Cout0 Cout Name

0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Computing Parity
X Y ⊕ Y Cin ⊕ Y
0 0 ⊕ Y Cin ⊕ Y Cin
0 1 Cin ⊕ Y ⊕ Y Cin
1 0 Cin ⊕ Y ⊕ Y Cin
1 1 ⊕ Y Cin ⊕ Y Cin

Cout1=1 when Cin=1
Cout0=0 when Cin=0
Cout = Cin propagate

Cout1=0 when Cin=1
Cout0=1 when Cin=0
Cout = Cin inverse propagate

Carry Chain Adder 11 Young Won Lim
10/7/20

Ripple Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

XNOR XOR

0

X Y Z

Cout1 Cout0

Cout

1 0

XNOR XOR

0Cout

1 0

XNOR XOR

0

X Y Z

Cout

1 0

XNOR XOR

PCout

Cin
1 0

0/1

X Y Z X Y Z

1

0

1

0

1

0

1

0

Cout1 Cout0 Cout1 Cout0 Cout1 Cout0

Carry Chain Adder 12 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

the logic cells - resources to compute a function
the exact location of logic cells depends on the user.
a user can start or end a carry computation
at any place in an fpga.

to start a carry chain, the first cell in the chain
must be programmed to ignore the Cin signal

program mux2 in the cell to route input Z
to mux1 instead of Cin

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

When it is desired to have a carry input
to the first cell of the chain
(implementing combined adder/subtractors)

But in many carry computations,
the first cell has only 2 inputs,
and forcing the carry chain
to wait for the arrival of an additional,
unnecessary input will only needlessly
slow down the circuit's computation.

Carry Chain Adder 13 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

F F

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

Cout1 Cout0

Cout

1

the first cell in the chain

the same LUTs

the same output
regardless of Z and Cin

Cout1 = Cout0 = Cout
regardless of the select

Carry Chain Adder 14 Young Won Lim
10/7/20

Ripple Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Out

Select

Select

I1

I0

fig1b shows an implementation of a mux that does
not obey this requirement

since the carry chain is part of an fpga,
the input to this mux could be connected to
some unused logic in another row which is
generating unknown values.

if that unused logic had multiple transitions
which caused the signal to change quicker
than the gate could react,
then it is possible that the select signal to this mux
could be stuck midway between true and false
(2.5V for 5V CMOS)

in this case, it will not be able to pass a true value
from the input to the output
and thus will not function properly for this
application.

Cout1 Cout0

Cout

1

Carry Chain Adder 15 Young Won Lim
10/7/20

Ripple Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Out

Select

I1

I0

Select

however a mux built with
both n-transistor and p-transistor pass gates
will operate properly for this case

assume this mux implementation will be used

tristate driver based muxes could be used,
which restore signal drive and cut series RC chains

Carry Chain Adder 16 Young Won Lim
10/7/20

Unit Gate Delay Model

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

All simple gate of two or three inputs
that are directly implementable
in one logic level in CMOS
are considered to have a delay of one.

All other gate must be implemented by such gates,
and have the delay of the underlying circuit.

Delay of one
● inverters and
● 2 to 3 input NAND
● 2 to 3 input NOR gates

A 2:1 mux has a delay of one
from the I0 or I1 inputs to the output,
But has a delay of two
from the select input to the output
due to the Inverter delay

Delay of zero (constant delay)
● the delay of the 2-LUTs,
● any routing leading to them,

Delay of one Delay of two

2 LUT

Delay of zero

Carry Chain Adder 17 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Significantly slower
two muxes on the carry chain in each cell

Delay 1 for first cell
Delay 3 for each additional cell in the carry chain

1 delay for mux2 and
2 delays for mux1

Overall 2n-2 for an n-cell carry chain

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

Delay 3 Delay 1

The critical path comes from the 2-LUTs
and not input Z
since the delay through the 2-LUTs
will be larger than through mux 2 in the first cell

Carry Chain Adder 18 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

to reduce the delay of the ripple carry chain
- remove mux2 from the carry path.
- no need to choose between Cin and Z
 for the select line to the output mux1
- two separate muxes, mux1 and mux2,
 controlled by Cin and Z respectively.
- the circuit chooses
 between these outputs with mux3.

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

Carry Chain Adder 19 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

although this design is 1 gate delay slower than that of fig 2a,
it provides the ability to have a carry input
to the first cell in a carry chain,
something that is important in many computations.

Also, for carry computations that do not need this feature,
the first cell in a carry chain built from fig 2b
can be configured to bypass mux1,
reducing the overall delay to 2n,
which is identical to that of fig2a.

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

Carry Chain Adder 20 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

on the other hand, in order to implement a n-bit carry chain with a carry input,
the design of fig 2a requires an additional cell at the beginning of the chain to bring in this input,
resulting in a delay of 2(n+1)=2n+2, which is lower than that of the design in fig2b
thus, the design of fig 2b is the preferred ripple carry design among those presented so far

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

1 2

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

1 2

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

1 2

Carry Chain Adder 21 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

delay of 1delay of 3 delay of 2

(2 for mux1, 1 for mux3)

delay of 2n for an n-bit ripple carry chain

50% faster circuit that the original design

Carry Chain Adder 22 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

various high performance carry chains
can be developed based on
the carry cell of fig 2c

this cell is very similar to that of fig 2b,
except that the actual carry chain (mux4)
has been replaced by an abstract fast carry logic unit
and mux5 has been added

this extra mux5 is present because
although some of our faster carry chains will
have much faster carry propagation
for long carry chains,
they incur significant delay
for non-carry computations

thus, when the cell is used as
a simple normal 3LUT,
using inputs X, Y, and Z
mux5 allows us to bypass the carry chain
by selecting the output of mux1

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 23 Young Won Lim
10/7/20

Fast Carry Logic Fast Carry Logic

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y

F

Cout

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

X Y

F

Cout

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

X Y

F

Cout

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

delay of 3delay of 2 delay of 2

(1 for mux1, 1 for mux2, 1 in mux4)
delay of 2n+1 for an n-bit ripple carry chain

1 gate delay slower

Carry Chain Adder 24 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

t

thus, the design of fig 2b is the preferred ripple carry design among those presented so far

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

 2n 2n+2 2n+1

Carry Chain Adder 25 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

However, carry chains built from this design have a delay of 3 in the first cell
(1 in mux1, 1 in mux2, 1 in mux4) and 2 in all other cells in the carry chain,
yielding an overall delay of 2n+1 for an n-bit carry chain.
thus, although this design is 1 gate delay slower than that of fig 2a,
it provides the ability to have a carry input to the first cell in a carry chain,
something that is important in many computations.
Also, for carry computations that do not need this feature, the first cell in a carry
chain built from fig 2b can be configured to bypass mux1, reducing the overall delay to 2n,
which is identical to that of fig2a.
on the other hand, in order to implement a n-bit carry chain with a carry input,
the design of fig 2a requires an additional cell at the beginning of the chain to bring in this input,
resulting in a delay of 2(n+1)=2n+2, which is lower than that of the design in fig2b
thus, the design of fig 2b is the preferred ripple carry design among those presented so far

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 26 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

to optimize a ripple carry chain structure for use in FPGAs
while this provides some performance gain over the basis ripple carry scheme
found in many current FPGAs, it is still much slower than what is done in custom logic
There have been tremendous amounts of work done on developing alternative
carry chain scheme that overcome the linear delay growth of ripple carry adders
Although these techniques have not yet been applied to FPGAs,
demonstrate how these advanced adder techniques can be integrated into reconfigurable logic

Carry Chain Adder 27 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

● not logically equivalent
● no longer use the Z input in the first cell

since Z is only attached to mux2
and mux 2 does not lead to the carry cells

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2 1 2

3

Carry Chain Adder 28 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

for cells in the middle of a carry chain
mux2 passes Cout1
mux3 passes Cout0
mux4 receives Cout1 and Cout0
provides a standard ripple carry path.

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

For the first cell in a carry chain
with a carry input (provided by input Z),
mux2 and mux3 both pass the value from mux1

the two main inputs to mux4 are identical
the output of mux4 (Cout) will be the same
as the output of mux1 (ignoring Cin)

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

Carry Chain Adder 29 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

mux1's main inputs are driven
by two 2-LUTs (OR, AND) controlled by X and Y
mux1 forms a 3-LUT with the other 2-LUTs

When mux2 and mux3 pass the value from mux1
(Cout1 and Cout2 respectively)
the circuit is configured to continue the carry chain

Functionally equivalent

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

Carry Chain Adder 30 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

a delay of 3 in the first cell
(1 in mux1, 1 in mux2, 1 in mux4)

2 in all other cells in the carry chain
an total delay of 2n+1 for an n-bit carry chain

1 gate delay slower than that of fig 2a,
a carry input to the first cell is enabled

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

Carry Chain Adder 31 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

Also, for carry computations that do not need this feature,
the first cell in a carry chain built from fig 2b
can be configured to bypass mux1,
reducing the overall delay to 2n,
which is identical to that of fig2a.

in order to implement a n-bit carry chain with a carry input,
the design of fig 2a requires an additional cell
at the beginning of the chain to bring in this input,
resulting in a delay of 2(n+1)=2n+2,
which is lower than that of the design in fig2b

thus, the design of fig 2b is the preferrred
ripple carry design among those presented so far

Carry Chain Adder 32 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

in order to implement a n-bit carry chain with a carry input,
the design of fig 2a requires an additional cell
at the beginning of the chain to bring in this input,
resulting in a delay of 2(n+1)=2n+2,
which is lower than that of the design in fig2b

thus, the design of fig 2b is the preferrred
ripple carry design among those presented so far

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

Carry Chain Adder 33 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

a delay of 3 in the first cell
(1 in mux1, 1 in mux2, 1 in mux4)

2 in all other cells in the carry chain
an total delay of 2n+1 for an n-bit carry chain

t1 gate delay slower than that of fig 2a,
a carry input to the first cell is enabled

Also, for carry computations that do not need this feature,
the first cell in a carry chain built from fig 2b
can be configured to bypass mux1,
reducing the overall delay to 2n,
which is identical to that of fig2a.

in order to implement a n-bit carry chain with a carry input,
the design of fig 2a requires an additional cell
at the beginning of the chain to bring in this input,
resulting in a delay of 2(n+1)=2n+2,
which is lower than that of the design in fig2b

thus, the design of fig 2b is the preferrred
ripple carry design among those presented so far

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

Carry Chain Adder 34 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3
2 3

4

1

Carry Chain Adder 35 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

C1 C0

OR AND

PP

Cout1 Cout0

2 3

4

1

2 3

5

1

Carry Chain Adder 36 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y Z

C1 C0

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

OR AND

PP

Cout1 Cout0

2 3

1

Carry Chain Adder 37 Young Won Lim
10/7/20

Carry Select Adder
Carry Lookahead Adder

Brent-Kung
Variable Block
Ripple Carry Adder

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Fast Carry Logc

Carry Chain Adder 38 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

M1

Cell 0Cell 3

M2

Cell 2

M4

Cell 5

M6

Cell 4

M10

Cell 6

M7

M3M8M9

M11M12 M5

Cout
0

Cout
1

Cout
2

Cout
3

Cout
4

Cout
5

Cout
6

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

C1
3

C0
3

C1
4

C0
4

C1
5

C0
5

C1
6

C0
6

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

Carry Chain Adder 39 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

M1

Cell 0Cell 3

M2

Cell 2

M4

Cell 5

M6

Cell 4

M10

Cell 6

M7

M3M8M9

M11M12 M5

Cout
0

Cout
1

Cout
2

Cout
3

Cout
4

Cout
5

Cout
6

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

C1
3

C0
3

C1
4

C0
4

C1
5

C0
5

C1
6

C0
6

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

Cout i+1=(Cout i⋅C 1i+1) + (Cout i⋅C 0i+1)

Cout i+1=([(Cout i−1⋅C1i) + (Cout i−1⋅C 0i)]⋅C 1i+1) + ([(Cout i−1⋅C1i) + (Cout i−1⋅C 0i)]⋅C 0i+1)

Cout1=(Cout 0⋅C11) + (Cout0⋅C01)

Cout1=(C10⋅C 11) + (C 10⋅C 01)

Carry Chain Adder 40 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5
Cout

1

Cout
3

C1
2

C0
2

C1
3

C0
3

Couti = (Cout i−1⋅C1i) + (Couti−1⋅C 0i)

Couti+1 = (Couti⋅C1i+1) + (Cout i⋅C0i+1)

Cout
1

C1
2

C0
2

Cout
2

Cout2 = (Cout1⋅C12) + (Cout1⋅C 02)

Cout3 = (Cout2⋅C 13) + (Cout 2⋅C 03)

= (((Cout1⋅C 12) + (Cout 1⋅C02))⋅C 13)

+ (((Cout 1⋅C12) + (Cout1⋅C 02))⋅C03)

(((Cout 1⋅C12)⋅(Cout1⋅C 02))⋅C 03)

= (((Cout1 + C 12)⋅(Cout 1 + C02))⋅C 03)

= (Cout1Cout 1 + C12Cout1 + Cout 1C 02 + C12C 02)⋅C 03

= (C12Cout1 + C 02Cout 1)⋅C 03

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

= (C03C12Cout1 + C 03C 02Cout 1)

(((Cout 1⋅C12) + (Cout1⋅C 02))⋅C13)

= (C13C12Cout 1 + C13C 02Cout1)

Carry Chain Adder 41 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5
Cout

1

Cout
3

C1
2

C0
2

C1
3

C0
3

Cout
1

C1
2

C0
2

Cout
2

= (Cout1Cout 1 + C12Cout1 + Cout 1C 02 + C12C 02)⋅C 03

= (C12Cout1 + C 02Cout 1)⋅C 03

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

= (C03C12Cout1 + C 03C 02Cout 1)

Carry Chain Adder 42 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5
Cout

1

Cout
3

C1
2

C0
2

C1
3

C0
3

Cout
1

C1
2

C0
2

Cout
2

C1
3
C1

2
+ C0

3
C1

2

C1
3
C0

2
+ C0

3
C0

2

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

+ C 03⋅(C12Cout1 + C 02Cout1)

= C13⋅(C12Cout1 + C 02Cout 1)

Carry Chain Adder 43 Young Won Lim
10/7/20

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5
Cout

1

Cout
3

C1
2

C0
2

C1
3

C0
3

Couti = (Cout i−1⋅C1i) + (Couti−1⋅C 0i)

Couti+1 = (Couti⋅C1i+1) + (Cout i⋅C0i+1)

Couti+1 = ([(Cout i−1⋅C1i) + (Couti−1⋅C 0i)]⋅C 1i+1)

Cout
1

C1
2

C0
2

Cout
2

+ ([(Cout i−1⋅C 1i) + (Couti−1⋅C 0i)]⋅C 0i+1)

Carry Chain Adder 44 Young Won Lim
10/7/20

References

[1] http://en.wikipedia.org/
[2] J-P Deschamps,et. al., “Sunthesis of Arithmetic Circuits”, 2006

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

