
Young Won Lim
10/15/21

● Loop
●

OpenMP Loop Parallelism (2A)

Young Won Lim
10/15/21

 Copyright (c) 2021 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

OpenMP Loop (2A) 3 Young Won Lim
10/15/21

Distributing the work over the threads

In a team of threads,
initially there will be replicated execution;

a work sharing construct divides
available parallelism over the threads.

OpenMP uses teams of threads,
and inside a parallel region
the work is distributed over the threads
with a work sharing construct.

threads can access shared data,
and they have some private data.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 4 Young Won Lim
10/15/21

Work Sharing Constructs

sections Construct – structured block

single Construct – only one of the threads

workshare Construct – a separate units of work

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 5 Young Won Lim
10/15/21

workshare construct

● divides the execution of
the enclosed structured block
into separate units of work

● causes the threads of the team
to share the work

● each unit is executed
only once by one thread,
in the context of its implicit task.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 6 Young Won Lim
10/15/21

workshare construct

 A worksharing directive (!) which allows parallelisation of Fortran 90 array
operations, WHERE and FORALL constructs.

!$omp workshare
 structured-block
!$omp end workshare [nowait]

https://www.openmp.org/spec-html/5.0/openmpsu39.html#x61-1170002.8.3

OpenMP Loop (2A) 7 Young Won Lim
10/15/21

Clauses (6)

nowait

Use this clause to avoid the implied barrier
at the end of the sections directive.

This is useful if you have multiple independent
work-sharing sections within a given parallel region.

Only one nowait clause can appear
on a given sections directive.

https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=processing-pragma-omp-section-pragma-omp-sections

OpenMP Loop (2A) 8 Young Won Lim
10/15/21

Clauses (13)

Ordered
 During execution of an iteration of a loop or a loop nest within a loop region, the
executing thread must not execute more than one ordered region which binds to
the same loop region. As a consequence, if multiple loops are associated to the
loop construct by a collapse clause, the ordered construct has to be located inside
all associated loops.
Specify this clause if an ordered construct is present within the dynamic extent of
the omp for directive.

https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=processing-pragma-omp-section-pragma-omp-sections

OpenMP Loop (2A) 9 Young Won Lim
10/15/21

Implicit task (1)

In addition to explicit tasks specified using the task directive,
the OpenMP specification version 3.0 introduces
the notion of implicit tasks.

An implicit task is a task generated
● by the implicit parallel region,
● when a parallel construct is encountered during execution.

The code for each implicit task is
the code inside the parallel construct.

Each implicit task is
● assigned to a different thread in the team and is tied;
● always executed from beginning to end

by the thread to which it is initially assigned.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Loop (2A) 10 Young Won Lim
10/15/21

Implicit task (2)

All implicit tasks generated
when a parallel construct is encountered

are guaranteed to be complete
when the master thread exits the implicit barrier
at the end of the parallel region.

all explicit tasks generated within a parallel region
are guaranteed to be complete
on exit from the next implicit or explicit barrier
within the parallel region.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Loop (2A) 11 Young Won Lim
10/15/21

Implicit task (3)

When an if clause is present on a task construct
and the value of the scalar-expression evaluates to false,
the thread that encounters the task must immediately execute the task.

The if clause can be used to avoid the overhead of
generating many finely grained tasks and
placing them in the conceptual pool.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Loop (2A) 12 Young Won Lim
10/15/21

Implicit barrier

Implicit BarriersSeveral OpenMP* constructs have implicit barriers
• parallel
• for
• single

Unnecessary barriers hurt performance
• Waiting threads accomplish no work!

Waiting threads accomplish no work!
Suppress implicit barriers, when safe, with the nowait

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

OpenMP Loop (2A) 13 Young Won Lim
10/15/21

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

