Multiple Random Variables

Young W Lim

April 23, 2020

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

イロト イポト イヨト イヨト

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Statistically independent

Definition

two events A and B are statistically independent iff

$$P(A \cap B) = P(A)P(B)$$

Let $A = \{X \le x\}$ and $B = \{Y \le y\}$ the two random variables X and Y are statistically independent iff

$$P\{X \le x, Y \le y\} = P\{X \le x\}P\{Y \le y\}$$
$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Statistical Indepence

Conditional distribution function for 2 random variables X and Y

Definition

the conditional distribution function of random variables X and Y

$$F_X(x|B) = F_X(x|Y \le y) = \frac{P\{X \le x, Y \le y\}}{P\{Y \le y\}} = \frac{F_{X,Y}(x,y)}{F_Y(y)}$$

if X and Y are statisitcally independent

$$F_X(x|B) = F_X(x|Y \le y) = F_X(x)$$

$$F_Y(y|A) = F_Y(y|X \le x) = F_Y(y)$$

$$f_X(x|B) = f_X(x|Y \le y) = f_X(x)$$

$$f_Y(y|A) = f_Y(y|X \le x) = f_Y(y)$$

Statistical independence of N random variables $X_1, X_2, ..., X_N$ and Y

Definition

events $A_i = \{X_i \le x_i\}$ i = 1, 2, ..., Nwhere x_i are real numbers the random variables $X_1, X_2, ..., X_N$ are said to be statistically independent iff

$$P(A_1 \cap A_2 \cap \ldots \cap A_N) = P(A_1)P(A_2)\ldots P(A_N)$$

Statistical independence of N random variables $X_1, X_2, ..., X_N$ and Y

Definition

It can be shown that if $X_1, X_2, ..., X_N$ are statistically independent then any set that consists of X_i 's is independent of any other sets

for example, consider 4 random variables X_1, X_2, X_3, X_4 X_4 is statistically independent of $X_1 + X_2 + X_3$ X_3 is statistically independent of $X_1 + X_2$

・ロト ・御 ト ・ ヨト ・ ヨト

æ.

・ロト ・御 ト ・ ヨト ・ ヨト

æ.