Introduction to ODEs

Young W. Lim

March 7, 2014

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Differentiation Types

Ordinary Differentiation

•
$$y = f(x)$$

• $\frac{dy}{dx}$

Partial Differentiation

•
$$z = f(x, y)$$

• $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$

•
$$u = f(x, y, z)$$

• $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}$

(ロ)、(型)、(E)、(E)、 E) の(()

ODEs and PDEs

Ordinary Differential Equation (ODE) Examples

•
$$y = f(x)$$

• $\frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = x$

Partial Differential Equation (ODE) Examples

•
$$u = f(x, y, z)$$

• $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

ODEs in normal form

Ordinary Differential Equation (ODE) Examples

•
$$y = f(x)$$

• $\frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = x$

- A General Form
 - $\frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y x = 0$

$$G(x,y,y',y'')=0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Normal Form

•
$$\frac{d^2y}{dx^2} = -a_1 \frac{dy}{dx} - a_0 y + x$$
 $y'' = g(x, y')$

Linear and Non-linear ODEs

Examples of Linear ODEs

• $\frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = x$

•
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Examples of Non-linear ODEs

•
$$y\frac{d^2y}{dx^2} + a_1(x)\left(\frac{dy}{dx}\right)^2 + a_0(x,y)y = x$$

Conditions of Linear ODEs

Examples of Linear ODEs

• $\frac{d^2y}{dx^2} + a_1\frac{dy}{dx} + a_0y = x$

•
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Conditions:

- the power of the dependent variable y and all its derivatives $(y, y', y'', \dots, y^{(n)})$ must be 1.
- the coefficients a_i depend on at most on the independent variable x.

Linear 1st and 2nd Order ODEs

Examples of Linear First Order ODEs

- $a_1 \frac{dy}{dx} + a_0 y = x$
- $a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$

Examples of Linear Second Order ODEs

•
$$a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = x$$

•
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solutions of ODEs

Ordinary Differential Equation

• $\frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y - x = 0$ G(x, y, y', y'') = 0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A function $\Phi(x)$ is a solution of the ODE if and only if
 - Φ(x) is defined on an interval I
 - its derivative $\Phi'(x), \Phi''(x)$ are continuous on an interval I
 - $G(x, \Phi', \Phi'') = 0$ for all x in the interval I
- the interval of definition / validity / the solution

Implicit and Explicit Solutions of ODEs

Ordinary Differential Equation

•
$$\frac{d^2y}{dx^2} + a_1\frac{dy}{dx} + a_0y - x = 0$$

$$G(x,y,y',y'')=0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Explicit solutions

•
$$y = \Phi(x)$$

Implicit solutions

•
$$H(x,y) = 0$$

Families of Solutions

Ordinary Differential Equations

• $a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y - x = 0$

$$G(x,y,y',y'')=0$$

Algebraic Equations

- $a_2X + a_1Y + a_0Z x = 0$
- 3 unknowns
- for the unique solution, we need 2 more equations.

Initial Conditions

Ordinary Differential Equations • $a_2 \frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y - x = 0$

G(x,y,y',y'')=0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Initial Conditions

- $y(x_0) = c_0$
- $y'(x_0) = c_1$

Initial Value Problem

Solve

•
$$y^{(n)} = g(x, y, y', \cdots, y^{(n-1)})$$

$$G(x,y,y',\cdots,y^{(n)})=0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Subject to

- y(x₀) = c₀
 y'(x₀) = c₁
- ...

•
$$y^{(n-1)}(x_0) = c_{n-1}$$

Existence and Uniqueness of IVP

Existence

- Does the differential equation possess solutions?
- Does any of the solution curves pass through the point (x_0, y_0)

Uniqueness

• There is precisely one solution curve that pass through the point (x_0, y_0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reference

[1] D. G. Zill and W. S. Wright , "Advanced Engineering Mathematics", 4th ed.

(ロ)、(型)、(E)、(E)、 E) の(()