Introduction to ODEs

Young W. Lim

March 7, 2014

Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Differentiation Types

Ordinary Differentiation

- $y=f(x)$
- $\frac{d y}{d x}$

Partial Differentiation

- $z=f(x, y)$
- $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$
- $u=f(x, y, z)$
- $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}$

ODEs and PDEs

Ordinary Differential Equation (ODE) Examples

- $y=f(x)$
- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=x$

Partial Differential Equation (ODE) Examples

- $u=f(x, y, z)$
- $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

ODEs in normal form

Ordinary Differential Equation (ODE) Examples

- $y=f(x)$
- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=x$
- A General Form
- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y-x=0$

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

- A Normal Form
- $\frac{d^{2} y}{d x^{2}}=-a_{1} \frac{d y}{d x}-a_{0} y+x$

Linear and Non-linear ODEs

Examples of Linear ODEs

- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=x$
- $a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$

Examples of Non-linear ODEs

- $y \frac{d^{2} y}{d x^{2}}+a_{1}(x)\left(\frac{d y}{d x}\right)^{2}+a_{0}(x, y) y=x$

Conditions of Linear ODEs

Examples of Linear ODEs

- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=x$
- $a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$

Conditions:

- the power of the dependent variable y and all its derivatives $\left(y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}\right)$ must be 1 .
- the coefficients a_{i} depend on at most on the independent variable x.

Linear 1st and 2nd Order ODEs

Examples of Linear First Order ODEs

- $a_{1} \frac{d y}{d x}+a_{0} y=x$
- $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$

Examples of Linear Second Order ODEs

- $a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=x$
- $a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$

Solutions of ODEs

Ordinary Differential Equation

- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y-x=0$

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

- A function $\Phi(x)$ is a solution of the ODE if and only if
- $\Phi(x)$ is defined on an interval I
- its derivative $\Phi^{\prime}(x), \Phi^{\prime \prime}(x)$ are continuous on an interval I
- $G\left(x, \Phi^{\prime}, \Phi^{\prime \prime}\right)=0$ for all x in the interval I
- the interval of definition / validity / the solution

Implicit and Explicit Solutions of ODEs

Ordinary Differential Equation

- $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y-x=0$

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Explicit solutions

- $y=\Phi(x)$

Implicit solutions

- $H(x, y)=0$

Families of Solutions

Ordinary Differential Equations

- $a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y-x=0$

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Algebraic Equations

- $a_{2} X+a_{1} Y+a_{0} Z-x=0$
- 3 unknowns
- for the unique solution, we need 2 more equations.

Initial Conditions

Ordinary Differential Equations

- $a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y-x=0$

$$
G\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Initial Conditions

- $y\left(x_{0}\right)=c_{0}$
- $y^{\prime}\left(x_{0}\right)=c_{1}$

Initial Value Problem

Solve

$$
y^{(n)}=g\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)
$$

$$
G\left(x, y, y^{\prime}, \cdots, y^{(n)}\right)=0
$$

Subject to

- $y\left(x_{0}\right)=c_{0}$
- $y^{\prime}\left(x_{0}\right)=c_{1}$
- $y^{(n-1)}\left(x_{0}\right)=c_{n-1}$

Existence and Uniqueness of IVP

Existence

- Does the differential equation possess solutions?
- Does any of the solution curves pass through the point (x_{0}, y_{0})

Uniqueness

- There is precisely one solution curve that pass through the point $\left(x_{0}, y_{0}\right)$

Reference

[1] D. G. Zill and W. S. Wright, "Advanced Engineering Mathematics", 4th ed.

